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ABSTRACT

The Cayuga Mine in upstate New York is the deepest rock salt
mine in North America. 1In 1975, mining had reached depths of
840 m (2,800 feet) resulting in severe ground problems. The
original mine design consisted of a conventional room and pillar
method utilizing 26.7 x 26.7 m (88 x 88 feet) pillars on 36.4 m
(120 feet) centers. Mining height ranged from 2.4 to 3 m (8 to 10
feet). Many roof falls were encountered, some as large as 60 m
(200 feet) in length and 3.6 m (12 feet) high. It appeared that no
rock bolt system was capable of‘supporting the roof and action
needed to be taken to insure the ability to continue safely mining
the deposit.

In 1976, a straight forward approach to rock mechanics was

instituted starting with an observation stage involving the mapping

Exhibit 5
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of ground conditions for the entire mine. The observation phase
gave clues to what factors may be contributing to the problen.
Next, simple rock mechanics instruments were installed, many of
which were constructed in-house. Next, design changes were
instituted based on real measurements and results were then
measured.

As a result of wutilizing a practical approach to rock
mechanics, a yielding pillar design was developed with great
success, Currently pillars are 4.5 x 4.5 m (15 x 15 feet) on
13.6 m (45 foot) ceﬁters énd roof bolt support has been
significantly reduced. Not only is the roof much safer to mine
under but productivity has increased, mining costs have decreased,
and ventilation has been made easier and more efféctive with the

shorter breakthroughs of the current design.
INTRODUCTION

Mining began on Cayuga's lowest level in 1968 utilizing a
typical room and pillar design for rock salt mines. The rooms were
9.7 m (32 feet) wide and averaged 2.7 m (9 feet) in height. The
pillars were 27 x 27 m (88 x 88 feet) square and the extractionl
ratio was 46 %. Conventional mining equipment was used consisting
of a Joy 15 RU undercutter, a Fletcher twin boom facedrill, a
Fletcher singlevboom roofbolter, Wagner ST-5 LHD's and a Stamler
feeder breaker. Mechanically anchored roofbolts 2.1 énd 2.4 m (7
and 8 feet) long were installed on 1.2 m (4 foot) centers. A

mining unit consisted of 17 entries on 36.4 m (120 feet) centers.
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Production was 3,300 tohs per day operating 3 shifts per day. 1In
about 1974, uncontrolled roof falls began to occur seriously
injuring one miner. 1In May of 1975, the entire mining front was
shut down for safety reasons. After a month of lost production,
mining began in another part of the mine. One year later this
mining front was also threatened by failing roof. At this time,
the operation turned its attention to rock mechanics to seek‘

improvements in ground control.

At that time, the engineer on staff, élong with Jack Parker
and Associates, started the beginnings of a rock mechanics program
which would prove to be fnstrumehtal to the success of the
operation. Several months were spent thoroughly mapping roof
failures throughout the entire lower level taking note of the mode,
shape and direction of the failures. Two significant observations
were made: 1. Mining conditions on the lower level (#6 salt bed)
were favorably influenced by the mining on the upper level (#4 salt
bed ) 91 m (300 feet) above. (See Figure 1) 2, The mode of
failure was such that, although the floor did not heave and the
pillars did not fail, the load was apparentiy too great for tﬁe
roof rocks resulting in shearing along the top of the pillars.
Once the shear took place, it was a matter of time until roof bolts
failed and a roof fall occurred. Some falls were over 80 m (220
feet) in length and ranged from .9 to 3.6 m (3 to 12 feet) in
height. It was theorized that vertical loading on the stiff

pillars resulted in horizontal stresses in the roof rocks great
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enough to fail the roof rocks in shear. Horizontal shifts in the

roof rocks were observed to be as much as 31 centimeters (12

inches). (See Figure 2)

The solution seemed to be related to the stiffness of the
pillars. It was thought that if the pillars were small enough they
would yield and not accept as much vertical loading, thus
significantly -reducing the horizontal thrusting in the vroof
(Barrientos and Parker, 1974). There were some critical questions
to be answered. Could"loéds be transferred from an area. of
yielding pillars to an area of stiffer pillars résulting in a
bridging effect over the yielding pillar zone? 1If so, could a
stress relief style of mining be utilized by manipulating the sizes
of the pillars? In essence, could high production areas with very
high extraction be created without roof problems? Could abutment
Zones be created in such a way that they would handle high vertical
loads without the roof hazards experiénced in the old design of
larger stiff pillars? The answers to these questions could mean
the solution to a very serious problem. The success of the

A Y

operation was hinging on the fact that a better mine design was

needed.

The mine took a practical approach to rock mechanics. It was
thought that it would be better to use the mine as the laboratory
by taking many simple measurements to determine how the rocks were

behaving than to thoroughly analyze rock samples in a laboratory to
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provide parameters for a theoretical model. The latter approach
tends to be costly and at times is not very useful. Specimens
taken out of the mine don't always répresent the true nature of the
rock "in situ" and loading conditions experienced in the mine
usually cannot be duplicated in the laboratory. This is especially
true in rock salt. It was felt that the better approach would be

to get many crude but inexpensive measurements right in the mine.
TECHNIQUES

An invar steel "Reed" type convergence rod (See Figure 3) was
purchased and closure stations were installed in the existing
design. Background measurements were needed'to compare the results
of any changes. Pillar expansion was also measured by borehole
extensometers (B.H.E.) as shown in Figure 4, which were built in-
house at very little cost. Once some base line measurements were
taken, an experiment was set up to try to determine the effect(s)

of yielding pillars. A summer student was then hired to help

install and monitor instruments.

The first experiment involved splitting existing large pillars
(27 x 27 m (88 x 88 feet)) into smaller yielding pillars (8.5 x
8.5 m) (28 x 28 feet). A site was selected near the mining front
far enough from the effects of mining yet close enough to tram the
muck to the feeder breaker. The measured cloéure rates and B.H.E.
results clearly indicated that the smaller pillars did yield to

their core and a transfer of load did take place from the smaller
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pillars to the adjacent larger pillars. General observations
showed that roof conditions among the newly created smaller pillars
were quite good while conditions in the surrounding area
deteriorated with a roof fall occurring adjacent to the test
(Petersen, et al., 1977). Based on the encouraging results of
pillar splitting, a panel 61 x 182 m (200 x 600 feet), and referred
to as the "NE experiment", was mined utilizing 8.5 m (28 feet)
square pillars and 9.7 m (32 feet) wide entries. The results were
equally encouraging and productivity was enhanced by the higher
extraction ratio and shorter trams. In fact, results wefe‘so
. encouraging that the 8.5 X 8.5 m (28 x 28 feet) pillars were
further reduced to 4.2 x 8.5 m (14 x 28 feet) by undercutting and
blasting (shown in Figure 5). The additional salt was mucked out as
extra production, enhancing the miners production bonus, which also
created enthusiasm among the miners (Petersen, et al., 1979).
Management was convinced, based on measurements and visual
observations, that the yielding pillar concept was in féct.doing
what was presupposed. It was evident that a stress relief style'of
mining had been developed and the decision was made to mine the
southeast.quadrant (SE) in‘this fashion thereby affording more
learning opportunities as mining progressed. In the meantime the
existing mining front to the south had ﬁit a major geological
discontinuity bringing production to a; grinding halt. With no
other area of the mine ready for produCtion, it was decided that
all production would come‘ from the SE quadrant utilizing the

yielding pillar concept and the large pillar design was abandoned.
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For the next seven years, a variety of yielding pillar
configurations were tried off of the sides of a development system
extending 2100 m (7,000 feet) to the east. The development
consisted of 3 sets of 3 entries 9.7 m (32 feet) wide with pillars
being 7.3 x 7.3 m (24 X 24 feet). ‘Each set of 3 entries were
separated by a barrier pillar roughly 45 x 45 m (150 x 150 feet) as
shown in Figure 5. Conditions in the center entry were excellent..
However, conditions along abutment zones were, at times, poor.
Softening the edge of the abutment pillars by mining notches into
them greatly improved their condition. A total of 15 production
units were mined off of the development in pursuit of the best

combination of pillar size, panel width, and abutment size. This

mining is shown in Figure 5,
RESULTS

Rock mechanics measurements and mapped observation led to the
following conclusions about mine design. Pillar size within the
miningAﬁnit had the greatest impact of roof conditions. ‘Each time
the pillar size was reduced, the roof conditions improved.
Currently, mining is done with 4.5 x 4.5 m ({slx 15 feet) pillars
in a mining height of 3.6 m (12 feet). The performance of a
Yielding pillar is mostly dependent upon the width to height ratio.
Thefefore, mining height must be taken into account when designing
the yielding pillar. It was found that a width to height ratio

(w/h) greater than 3 was too stiff., Experience in another rock

salt mine showed that a width to height ratio less than 1 can lead



to excessive pillar slabbing and ultimately pillar failufe.

Entries along stiff abutment zones tended to perform poorly
and at times would fail. It was found that nqtching the abutment
was an effective stress relief technique and when done right
abutment entry conditions greatly improved (Plumeau and Petersen,
1981). The primary purpose of the abutment zone is to provide
support for the transferred load. As panels were stacked up side
by side in sequence, the load transfer across various abutment
widths to the next panel was measured by closure points. As shown
in Figure 6, it was found that a minimum width of 76 m (250 feet)

was a good size to use to carry the overburden loads and to isolate

one panel from another.

It was also found that the wider the mining panel, the greater
the closure was within the panel. It waé theorized that 1if the
zone of yielding pillars got too wide the bridging effect over the
panel would be lost subjecting the yielding pillars to excessive
loading, which would be undesirable. An §ttempt was madento
approach this critical width and an area called P-3 was mined out
210 x 210 m (700 x 700 feet) with 7.2 x 7.2 m (24 x 24 feet)
pillars (see Figure 5). Even though mining pressures at the face
were high, causing some problems, the area remains stable even
today (13 years later). It was concluded that a maximum panel

width of 150 m (500 feet) was a good rule of thumb to follow.
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Once the SE quadrant was no longer economical to mine, plans
 were made to mine the NW quadrant utilizing a design derived from
the seven years of development and experimentation in the SE
quadrant. Development of the NW quadrant began in 1984 starting
near the shafts, and was in essence the start of a new mine. It
was decided to mine the main 4550 m (15,000 feet) to the boundary
utilizing a six entry system with 6.1 x 6.1 m (20 x 20 feet)
pillars on 15.1 m (50 foot) centers. This was completed in 1990
and is shown in Figure 7. During the development, an occasional
production unit was mined on the advance to subsidize production
quotas. However, most of the salt deposit was left to be mined on
a retreat from the boundary back to the shaft, leaving mining
induced problems behind. The latest production panel was a nine
entry system utilizing 4.5 x 4.5 m (15 x 15 feet) pillars on

13.6 m (45 foot) centers. The panel is 148 m (490 feet) wide
including 15 m (50 feet) of notching on each side. The abutment

zone is designed to be 91 m (300 feet) wide.
CONCLUSIONS

Mining conditions with the yielding pildar design in the NW
quadrant are excellent, even in the outside entries along the
abutment zones. Productivity has been increased by over 60% and is
at an all time high, in part due_td the new mine design. The
improved roof conditions have lessened the need for roof support,
have virtually eliminated falls of ground, and have significantly

reduced injuries due to falls of ground, or scaling. 1In addition
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to better roof conditions, the design has lent itself to easier
ventilation, shorter hauls to the feeder-brgake;, and shorter
equipment moves from one entry to the next. The practical approach
to mine design by mapping observed ground conditions and by taking

simple measurements has handsomely paid off at the Cayuga Mine.
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Illustration Captions

Partial'geologic section showing location of No. 4 and
No. 6 salt bed.

Cross sgction of typical roof failure in salt roof.
"Reed" type convergence rod.

"Homemade" borehole extensometer.

Map showing SE quadrant of the Cayuga Mine.
Influence across abutment pillars.

NW quadrant mining.’
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Salt thrusts sideways
shearing roof bolts

Fig. 2 Cross section of typical roof failure in salt roof.
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Petersen

lojered pins for adjusting rod length

Dial gage reading to .001"

Anchor an acorn cap nut recessed in the floor

1]

\J///z

Fig. 3 Reed Type Convergence Rod
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