CARGILL, INC. CONFIDENTIALITY JUSTIFICATION

Cargill, Inc. hereby requests under 6 NYCRR Part 616 and the Public Officer's Law that the Department except from disclosure the following information provided in the Cargill, Inc. response to the Department of Environmental Conservation December 15, 2015 Notice of Incomplete Application, Cargill Salt Mine DEC #-9999-00075, New Ventilation and Access Shaft #4:

a. Cargill Deicing Technology Lansing Mine Corehole #18 Stratigraphic Test Hole Installation and Data Collection Report.

The information constitutes confidential commercial information of Cargill, Inc. and/or records maintained for the regulation of commercial enterprise which if disclosed would cause substantial injury to the competitive position of Cargill, Inc. As a result, this information is subject to protection against disclosure as provided in paragraph (d) of subdivision (2) of Section 87 of the Public Officer's Law.

The information that is subject to this claim of exemption from disclosure is not known outside of Cargill, Inc. and is known by the employees and others involved in the business of Cargill, Inc. only to the extent required to accomplish the functions assigned to such employees and others by Cargill, Inc. The deicing salt business is a highly competitive market where product quality is critical and competitive pricing is determined by production efficiencies measured in pennies per ton of product. Knowledge by a competitor of Cargill, Inc.'s mineral volumes and stratigraphy that relates directly to cost of production holds potential for significant quality, production and economic advantage to the competitor and disadvantage to Cargill which has devoted a substantial investment to developing its mineral reserves and market position. Because Cargill, Inc. holds this information as proprietary and highly confidential, the information could not be properly acquired or duplicated by others, absent disclosure by the Department.

Based on these factors, the information identified above is entitled to protection against disclosure under the Public Officer's Law.

CARGILL DEICING TECHNOLOGY LANSING MINE COREHOLE #18 STRATIGRAPHIC TEST HOLE INSTALLATION AND DATA COLLECTION

Topical Report RSI-2381

prepared for

Cargill Deicing Technology Cayuga Mine P.O. Box 191 Portland Point Road Lansing, New York 14882

November 2013

CARGILL DEICING TECHNOLOGY LANSING MINE COREHOLE #18 STRATIGRAPHIC TEST HOLE INSTALLATION AND DATA COLLECTION

Topical Report RSI-2381

by

David J. Gnage William M. Goodman John D. Osnes

RESPEC P.O. Box 725 Rapid City, South Dakota 57709

prepared for

Cargill Deicing Technology Cayuga Mine P.O. Box 191 Portland Point Road Lansing, New York 14882

November 2013

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	FIE	LD PROGRAM AND DATA COLLECTION	2
	2.1	TEST HOLE DRILLING AND TESTING OBSERVATION	2
	2.2	CORE LOGGING	3
	2.3	OBSERVATION OF GEOPHYSICAL LOGGING	3
	2.4	AQUIFER PUMPING TEST	12
	2.5	WATER SAMPLING AND ANALYSIS	13
	2.6	PLUG AND ABANDONMENT	15
3.0	CO	MPLETION OF DATA ANALYSIS AND REPORTING	16
	3.1	STRATIGRAPHY AND STRUCTURE	16
		3.1.1 Stratigraphy	16
		3.1.2 Structure	26
	3.2	WATER-BEARING ZONE DEFINITION AND SUSTAINED SHAFT EXCAVATION INFLOW ESTIMATE	35
		3.2.1 Pumping Test Data Analysis	35
		3.2.2 Shaft Inflow Rate Estimation	35
	3.3	INTERPRETATION OF FORMATION WATER GEOCHEMICAL DATA	38
	3.4	GEOMECHANICAL LABORATORY TESTING OF CORE SAMPLES	42
	3.5	SUMMARY OF FINDINGS	42
4.0	REI	FERENCES	44
AP	PEN	DIX A. CHIP SAMPLE PHOTOGRAPHS	A-1
AP	PEN	DIX B. BEDROCK CORE SAMPLE PHOTOGRAPHS	B-1
AP	PEN	DIX C. WEATHERFORD WIRELINE LOGS	C-1
AP	PEN	DIX D. AQTESOLV SOLUTION DATA	D-1

LIST OF TABLES

TABLE

2-1	Bedrock Core Quality Log	4
2-2	Water-Quality Field Parameters	14
2-3	Water-Sample Analysis Summary Table	15
3-1	Stratigraphic Picks	17
3-2	Water Sample Analytical Results	40
3-3	Summary of Samples Selected for Geomechanical Analysis	43

LIST OF FIGURES

FIGURE

2-1	Borehole Diagram	6
2-2	Lithologic Descriptions of the Cored Formations	7
3-1	Stratigraphic Formation Picks With Gamma Ray Log and Select Formation Pictures	21
3-2	Isopach Map of the #6 Salt	28
3-3	Isopach Map of the #5 Salt	29
3-4	Structural Contour Map of the Top of the #6 Salt	30
3-5	Structural Contour Map of the Base of the #4A Salt	31
3-6	Structural Contour Map of the Top of the Salt Sequence (Salina F)	32
3-7	Structural Contour Map of the Top of the Camillus Shale (Salina G)	33
3-8	Structural Contour Map of the Carbonates (Top of Cherry Valley)	34
3-9	Corehole #18 Response to Pumping	36
3-10	Corehole #18 Response to Pumping Compared to the Predicted Response to Pumping	37
3-11	Predicted Water Production From an 18-Inch- (Pilot Hole) and 18-Foot- (Shaft) Diameter Borehole	39
3-12	Comparison of Corehole #18 Isotope Samples With Regional Isotope Data Points	41
A-1	Corehole #18: 4–26 Feet Below Ground Surface	A-2
A-2	Corehole #18: Approximately 26 Feet Below Ground Surface	A-2
A-3	Corehole #18: 52 Feet Below Ground Surface	A-3
A-4	Corehole #18: 72 Feet Below Ground Surface	A-3
A-5	Corehole #18: 92 Feet Below Ground Surface	A-4
A-6	Corehole #18: 112 Feet Below Ground Surface	A-4
A-7	Corehole #18: 132 Feet Below Ground Surface	A-5
A-8	Corehole #18: 152 Feet Below Ground Surface	A-5
A-9	Corehole #18: 172 Feet Below Ground Surface	A-6
A-10	Corehole #18: 192 Feet Below Ground Surface	A-6
A-11	Corehole #18: 212 Feet Below Ground Surface	A-7
A-12	Corehole #18: 232 Feet Below Ground Surface	A-7
A-13	Corehole #18: 252 Feet Below Ground Surface	A-8

LIST OF FIGURES (Continued)

FIGURE

A-14	Corehole #18: 272 Feet Below Ground	Surface A-8
A-15	Corehole #18: 292 Feet Below Ground	Surface A-9
A-16	Corehole #18: 312 Feet Below Ground	Surface A-9
A-17	Corehole #18: 332 Feet Below Ground	SurfaceA-10
A-18	Corehole #18: 352 Feet Below Ground	SurfaceA-10
A-19	Corehole #18: 372 Feet Below Ground	SurfaceA-11
A-20	Corehole #18: 392 Feet Below Ground	SurfaceA-11
A-21	Corehole #18: 412 Feet Below Ground	SurfaceA-12
A-22	Corehole #18: 432 Feet Below Ground	SurfaceA-12
A-23	Corehole #18: 452 Feet Below Ground	SurfaceA-13
A-24	Corehole #18: 472 Feet Below Ground	SurfaceA-13
A-25	Corehole #18: 492 Feet Below Ground	SurfaceA-14
A-26	Corehole #18: 512 Feet Below Ground	SurfaceA-14
A-27	Corehole #18: 532 Feet Below Ground	SurfaceA-15
A-28	Corehole #18: 552 Feet Below Ground	SurfaceA-15
A-29	Corehole #18: 572 Feet Below Ground	SurfaceA-16
A-30	Corehole #18: 592 Feet Below Ground	SurfaceA-16
A-31	Corehole #18: 600 Feet Below Ground	SurfaceA-17
A-32	Corehole #18: 620 Feet Below Ground	SurfaceA-17
A-33	Corehole #18: 640 Feet Below Ground	SurfaceA-18
A-34	Corehole #18: 660 Feet Below Ground	SurfaceA-18
A-35	Corehole #18: 680 Feet Below Ground	SurfaceA-19
A-36	Corehole #18: 700 Feet Below Ground	SurfaceA-19
A-37	Corehole #18: 720 Feet Below Ground	SurfaceA-20
A-38	Corehole #18: 740 Feet Below Ground	SurfaceA-20
A-39	Corehole #18: 760 Feet Below Ground	SurfaceA-21
A-40	Corehole #18: 780 Feet Below Ground	SurfaceA-21
A-41	Corehole #18: 800 Feet Below Ground	SurfaceA-22
A-42	Corehole #18: 820 Feet Below Ground	SurfaceA-22

LIST OF FIGURES (Continued)

FIGURE

 A-43 Corehole #18: 840 Feet Below Ground Surface	A-23 A-24 A-25 A-25 A-25 A-26 A-26
 A-45 Corehole #18: 880 Feet Below Ground Surface	A-24 A-25 A-25 A-25 A-26 A-26
 A-46 Corehole #18: 900 Feet Below Ground Surface	A-24 A-25 A-25 A-26 A-26
 A-47 Corehole #18: 920 Feet Below Ground Surface	A-25 A-25 A-26 A-26
A-48 Corehole #18: 940 Feet Below Ground SurfaceA A-49 Corehole #18: 960 Feet Below Ground SurfaceA	A-25 A-26 A-26
A-49 Corehole #18: 960 Feet Below Ground SurfaceA	A-26 A-26
	-26
A-50 Corehole #18: 980 Feet Below Ground SurfaceA	07
A-51 Corehole #18: 1,000 Feet Below Ground SurfaceA	-21
A-52 Corehole #18: 1,020 Feet Below Ground SurfaceA	-27
A-53 Corehole #18: 1,040 Feet Below Ground SurfaceA	-28
A-54 Corehole #18: 1,060 Feet Below Ground SurfaceA	-28
A-55 Corehole #18: 1,080 Feet Below Ground SurfaceA	-29
A-56 Corehole #18: 1,100 Feet Below Ground SurfaceA	-29
A-57 Corehole #18: 1,120 Feet Below Ground SurfaceA	-30
A-58 Corehole #18: 1,140 Feet Below Ground SurfaceA	-30
A-59 Corehole #18: 1,160 Feet Below Ground SurfaceA	-31
A-60 Corehole #18: 1,180 Feet Below Ground SurfaceA	-31
A-61 Corehole #18: 1,200 Feet Below Ground SurfaceA	-32
A-62 Corehole #18: 1,220 Feet Below Ground SurfaceA	-32
A-63 Corehole #18: 1,240 Feet Below Ground SurfaceA	-33
A-64 Corehole #18: 1,260 Feet Below Ground SurfaceA	-33
A-65 Corehole #18: 1,280 Feet Below Ground SurfaceA	-34
A-66 Corehole #18: 1,300 Feet Below Ground SurfaceA	-34
A-67 Corehole #18: 1,320 Feet Below Ground SurfaceA	-35
A-68 Corehole #18: 1,340 Feet Below Ground SurfaceA	-35
A-69 Corehole #18: 1,360 Feet Below Ground SurfaceA	-36
A-70 Corehole #18: 1,380 Feet Below Ground SurfaceA	-36

LIST OF FIGURES (Continued)

FIGURE

A-71	Corehole #18: 1,400 Feet Below Ground Surface
A-72	Corehole #18: 1,410 Feet Below Ground SurfaceA-37
A-73	Corehole #18: 1,420 Feet Below Ground SurfaceA-38
A-74	Corehole #18: 1,430 Feet Below Ground SurfaceA-38
A-75	Corehole #18: 1,440 Feet Below Ground Surface
A-76	Corehole #18: 1,450 Feet Below Ground Surface
A-77	Corehole #18: 1,455 Feet Below Ground SurfaceA-40
A-78	Corehole #18: 1,465 Feet Below Ground SurfaceA-40
A-79	Corehole #18: 1,475 Feet Below Ground SurfaceA-41
A-80	Corehole #18: 1,485 Feet Below Ground Surface
A-81	Corehole #18: 1,495 Feet Below Ground Surface
A-82	Corehole #18: 1,505 Feet Below Ground SurfaceA-42
A-83	Corehole #18: 1,515 Feet Below Ground Surface
A-84	Corehole #18: 1,525 Feet Below Ground Surface
A-85	Corehole #18: 1,535 Feet Below Ground Surface
A-86	Corehole #18: 1,545 Feet Below Ground Surface
A-87	Corehole #18: 1,555 Feet Below Ground Surface
B-1	1,555–1,566 Feet Below Ground Surface B-2
B-2	1,566–1,576 Feet Below Ground Surface B-2
B-3	1,576–1,585.4 Feet Below Ground Surface
B-4	1585.4–1,594.5 Feet Below Ground Surface B-3
B-5	1,594.5–1,604 Feet Below Ground Surface B-4
B-6	1,604–1,613 Feet Below Ground Surface
B-7	1,613–1,622 Feet Below Ground Surface B-5
B-8	1,622–1,631.5 Feet Below Ground Surface
B-9	1,631.5–1,640.7 Feet Below Ground Surface B-6
B-10	Core Before Breaking to Fit in the Core Box B-6
B-11	1,640.7–1,649.3 Feet Below Ground Surface B-7
B-12	Core Before Breaking to Fit in Core Box

LIST OF FIGURES (Continued)

FIGURE

B-13	1,649.3–1,658.5 Feet Below Ground Surface B-8
B-14	1,658.5–1,667.8 Feet Below Ground Surface B-8
B-15	1,667.8–1,676.6 Feet Below Ground Surface B-9
B-16	1,676.6–1,685.8 Feet Below Ground Surface B-9
B-17	1,685.8–1,694.7 Feet Below Ground SurfaceB-10
B-18	Core Before Breaking to Fit in Core BoxB-10
B-19	Runs 14 and 15: 1,694.7–1,705.8 Feet Below Ground SurfaceB-11
B-20	Run 16: 1,705.8–1,716 Feet Below Ground SurfaceB-11
B-21	Run 17: 1,716–1,726 Feet Below Ground SurfaceB-12
B-22	Run 18: 1,726–1,736 Feet Below Ground SurfaceB-12
B-23	Run 19: 1,736–1,746 Feet Below Ground SurfaceB-13
B-24	Run 20: 1,746–1,756 Feet Below Ground SurfaceB-13
B-25	Run 21: 1,756–1,766 Feet Below Ground SurfaceB-14
B-26	Run 22: 1,766–1,776 Feet Below Ground SurfaceB-14
B-27	Run 23: 1,776–1,786 Feet Below Ground SurfaceB-15
B-28	Run 24: 1,786–1,796 Feet Below Ground SurfaceB-15
B-29	Run 25: 1,796–1,806 Feet Below Ground SurfaceB-16
B-30	Run 26: 1,806–1,816 Feet Below Ground SurfaceB-16
B-31	Run 27: 1,816–1,826 Feet Below Ground SurfaceB-17
B-32	Run 28: 1,826–1,836 Feet Below Ground SurfaceB-17
B-33	Run 29: 1,836–1,846 Feet Below Ground SurfaceB-18
B-34	Run 30: 1,846–1,856 Feet Below Ground SurfaceB-18
B-35	Run 31: 1,856–1,866 Feet Below Ground SurfaceB-19
B-36	Run 32: 1,866–1,876 Feet Below Ground SurfaceB-19
B-37	Run 33: 1,876–1,886 Feet Below Ground SurfaceB-20
B-38	Orange Salt Infilling at 1,884.9B-20
B-39	Run 34: 1,886–1,896 Feet Below Ground SurfaceB-21
B-40	1,896 Feet Below Ground SurfaceB-21

LIST OF FIGURES (Continued)

FIGURE

B-41	Run 35: 1,896–1,906 Feet Below Ground SurfaceB-22
B-42	Run 36: 1,906–1,916 Feet Below Ground SurfaceB-22
B-43	Run 37: 1,916–1,926 Feet Below Ground SurfaceB-23
B-44	Run 38: 1,926–1,936 Feet Below Ground SurfaceB-23
B-45	Run 39: 1,936–1,946 Feet Below Ground SurfaceB-24
B-46	Run 40: 1,946–1,956 Feet Below Ground SurfaceB-24
B-47	Close-Up View at 1,951 Feet Below Ground SurfaceB-25
B-48	Run 41: 1,956–1,966 Feet Below Ground SurfaceB-25
B-49	Run 42: 1,966–1,976 Feet Below Ground SurfaceB-26
B-50	Run 43: 1,976–1,986 Feet Below Ground SurfaceB-26
B-51	Transition Zone at 1,985.6 Feet Below Ground SurfaceB-27
B-52	Run 44: 1,986–1,996 Feet Below Ground SurfaceB-27
B-53	Run 45: 1,996–2,006 Feet Below Ground SurfaceB-28
B-54	Run 46: 2,006–2,016 Feet Below Ground SurfaceB-28
B-55	Salt Infilling at 2,009.7 Feet Below Ground SurfaceB-29
	Salt Infilling at 2,009.7 Feet Below Ground SurfaceB-29 Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29
B-56	
B-56 B-57	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29
B-56 B-57 B-58	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29 Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30
B-56 B-57 B-58 B-59	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29 Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30 Large Salt Crystals at 2,016.7 Feet Below Ground SurfaceB-30
B-56 B-57 B-58 B-59 B-60	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30Large Salt Crystals at 2,016.7 Feet Below Ground SurfaceB-30Run 48: 2,026–2,036 Feet Below Ground SurfaceB-31
B-56 B-57 B-58 B-59 B-60 B-61	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30Large Salt Crystals at 2,016.7 Feet Below Ground SurfaceB-30Run 48: 2,026–2,036 Feet Below Ground SurfaceB-31Run 49: 2,036–2,046 Feet Below Ground SurfaceB-31
B-56 B-57 B-58 B-59 B-60 B-61 B-62	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30Large Salt Crystals at 2,016.7 Feet Below Ground SurfaceB-30Run 48: 2,026–2,036 Feet Below Ground SurfaceB-31Run 49: 2,036–2,046 Feet Below Ground SurfaceB-31Run 50: 2,046–2,056 Feet Below Ground SurfaceB-32
B-56 B-57 B-58 B-59 B-60 B-61 B-62 B-63	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30Large Salt Crystals at 2,016.7 Feet Below Ground SurfaceB-30Run 48: 2,026–2,036 Feet Below Ground SurfaceB-31Run 49: 2,036–2,046 Feet Below Ground SurfaceB-31Run 50: 2,046–2,056 Feet Below Ground SurfaceB-32Run 51: 2,056–2,066 Feet Below Ground SurfaceB-32
B-56 B-57 B-58 B-59 B-60 B-61 B-62 B-63 B-64	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30Large Salt Crystals at 2,016.7 Feet Below Ground SurfaceB-30Run 48: 2,026–2,036 Feet Below Ground SurfaceB-31Run 49: 2,036–2,046 Feet Below Ground SurfaceB-31Run 50: 2,046–2,056 Feet Below Ground SurfaceB-32Run 51: 2,056–2,066 Feet Below Ground SurfaceB-32Run 52: 2,066–2,076 Feet Below Ground SurfaceB-33
B-56 B-57 B-58 B-60 B-61 B-62 B-63 B-64 B-65	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30Large Salt Crystals at 2,016.7 Feet Below Ground SurfaceB-30Run 48: 2,026–2,036 Feet Below Ground SurfaceB-31Run 49: 2,036–2,046 Feet Below Ground SurfaceB-31Run 50: 2,046–2,056 Feet Below Ground SurfaceB-32Run 51: 2,056–2,066 Feet Below Ground SurfaceB-32Run 52: 2,066–2,076 Feet Below Ground SurfaceB-33Run 53: 2,076–2,086 Feet Below Ground SurfaceB-33
B-56 B-57 B-59 B-60 B-61 B-62 B-63 B-64 B-65 B-66	Run 47: 2,016–2,026 Feet Below Ground SurfaceB-29Dolostone "Pebble" at 2,025.8 Feet Below Ground SurfaceB-30Large Salt Crystals at 2,016.7 Feet Below Ground SurfaceB-30Run 48: 2,026–2,036 Feet Below Ground SurfaceB-31Run 49: 2,036–2,046 Feet Below Ground SurfaceB-31Run 50: 2,046–2,056 Feet Below Ground SurfaceB-32Run 51: 2,056–2,066 Feet Below Ground SurfaceB-32Run 52: 2,066–2,076 Feet Below Ground SurfaceB-33Run 53: 2,076–2,086 Feet Below Ground SurfaceB-33Run 54: 2,086–2,096 Feet Below Ground SurfaceB-34

LIST OF FIGURES (Continued)

FIGURE

Run 58: 2,126–2,136 Feet Below Ground SurfaceB-36
Run 59: 2,136–2,146 Feet Below Ground SurfaceB-36
Run 60: 2,146–2,156 Feet Below Ground SurfaceB-37
Run 61: 2,156–2,166 Feet Below Ground SurfaceB-37
Run 62: 2,166–2,176 Feet Below Ground SurfaceB-38
Run 63: 2,176–2,186 Feet Below Ground SurfaceB-38
Run 64: 2,186–2,196 Feet Below Ground SurfaceB-39
Run 65: 2,196–2,206 Feet Below Ground SurfaceB-39
Run 66: 2,206–2,216 Feet Below Ground SurfaceB-40
Run 67: 2,216–2,226 Feet Below Ground SurfaceB-40
Orange Salt Seam at 2,223.6 Feet Below Ground SurfaceB-41
Run 68: 2,226–2,236 Feet Below Ground SurfaceB-41
Run 69: 2,236–2,246 Feet Below Ground SurfaceB-42
Run 70: 2,246–2,256 Feet Below Ground SurfaceB-42
Run 71: 2,256–2,266 Feet Below Ground SurfaceB-43
Run 72: 2,266–2,276 Feet Below Ground SurfaceB-43
Run 73: 2,276–2,286 Feet Below Ground SurfaceB-44
Run 74: 2,286–2,296 Feet Below Ground SurfaceB-44
Run 75: 2,296–2,306 Feet Below Ground SurfaceB-45
Run 76: 2,306–2,316 Feet Below Ground SurfaceB-45
Run 77: 2,316–2,326 Feet Below Ground SurfaceB-46
Run 78: 2,326–2,336 Feet Below Ground SurfaceB-46
Run 79: 2,336–2,346 Feet Below Ground SurfaceB-47
Run 80: 2,346–2,356 Feet Below Ground SurfaceB-47
Run 81: 2,356–2,366 Feet Below Ground SurfaceB-48
Run 82: 2,366–2,376 Feet Below Ground SurfaceB-48
Run 83: 2,376–2,386 Feet Below Ground SurfaceB-49
Run 84: 2,386–2,396 Feet Below Ground SurfaceB-49

LIST OF FIGURES (Continued)

FIGURE

3-97 Run 85: 2,396–2,406 Feet Below Ground SurfaceB-	-50
3-98 Run 86: 2,406–2,416 Feet Below Ground SurfaceB-	-50
3-99 Run 87: 2,416–2,426 Feet Below Ground SurfaceB-	-51
3-100 Bottom of Salina D1/#7 Salt Salina C/Vernon Formation Transition ZoneB-	-51
3-101 Run 88: 2,426–2,436 Feet Below Ground SurfaceB-	-52
3-102 Run 89: 2,436–2,446 Feet Below Ground SurfaceB-	-52
3-103 Run 90: 2,446–2,456 Feet Below Ground SurfaceB-	-53
3-104 Run 91: 2,456–2,466 Feet Below Ground SurfaceB-	-53
3-105 Run 92: 2,466–2,476 Feet Below Ground SurfaceB-	-54
3-106 Run 93: 2,476–2,486 Feet Below Ground SurfaceB-	-54
3-107 Brine Bubbles Under the Salt Sheet in the Vertical Fracture at 2,484 Feet Below Ground Surface	-55

1.0 INTRODUCTION

Cargill Deicing Technology plans to sink an additional mine shaft (#4 Shaft) at their Cayuga Mine in Lansing, New York. As part of the design process, Cargill has completed a stratigraphic test hole (Corehole #18) in the area of the proposed mine shaft to confirm stratigraphy and gain a better understanding of potential water and gas zones that may be encountered during shaft sinking.

RESPEC assisted Cargill with the completion of Corehole #18, which was drilled to a depth of 2,486 feet below ground surface (ft bgs) by using a combination of air-rotary, percussion (hammer), and wet-rotary methods. The following tasks associated with the test hole field program were completed:

- Test Hole Drilling and Testing Observation
- Core Logging
- Observation of Geophysical Logging
- Aquifer Pumping Test
- Water Sampling and Analyses.

Each of these tasks is described further in Chapter 2.0.

Additionally, RESPEC completed the following tasks associated with the analysis of the test hole data collected during the field program:

- Stratigraphy and Structure
- Water-Bearing Zone Definition and Sustained Shaft Excavation Inflow Estimate
- Geomechanical Laboratory Testing of Core Samples
- Interpretation of Formation Water Geochemical Data
- Summary on Findings.

Each of these tasks is described further in Chapter 3.0.

2.0 FIELD PROGRAM AND DATA COLLECTION

The field activities that were conducted by RESPEC as part of installing Corehole #18 are discussed in this chapter.

2.1 TEST HOLE DRILLING AND TESTING OBSERVATION

A RESPEC field geologist observed the advancement of Corehole #18 through the upper stratigraphic section in the Helderberg Group carbonates from ground surface to 1,555 feet. The drilling was conducted by Frey Well Drilling, Inc. (Frey) of Alden, New York, and drilling began by installing a 10.75-inch conductor/overburden casing to 28.5 feet using air-rotary drilling methods. After installing the conductor casing, a nominal 8.75-inch borehole was advanced into the Hamilton Group shales to a depth of 590 ft bgs using air-rotary methods, a 7-inch surface casing was then installed and cemented from 590 feet to surface. New York State Department of Environmental Conservation (NYSDEC) personnel were also present for installing and grouting the surface casing. After allowing the surface casing cement to set, the borehole was advanced into the Helderberg Group carbonates to a depth of approximately 1,555 ft bgs by using percussion drilling methods (air-hammer). With the exception of the conductor casing, all drilling activities were conducted through a hydraulically activated blowout preventer (BOP).

RESPEC collected and photograph-documented rock chip samples from top of rock (26.8 ft bgs) to 1,555 ft bgs. Samples were collected at 20-foot intervals from the top of rock to the Devonian carbonates (top of Cherry Valley Limestone at approximately 1,400 ft bgs) and then the sample collection frequency increased to every 10 feet. Appendix A provides a photographic log of the chip samples collected.

A water-and-gas-producing zone was encountered at approximately 1,485 ft bgs in the lower Onondaga/Oriskany interval. Based on water returns, the estimated water make from the interval during drilling was 10–15 gallons per minute (gpm). The estimated gas production rate was 13,300 cubic feet per day (cfd). No other significant water production zones were noted in the upper 1,555 feet of the borehole. Based on the estimated water production from this Onondaga/Oriskany interval, Cargill requested that a pumping test be conducted to more accurately determine fluid production from this zone before advancing the borehole further. The pumping test is discussed further in Section 2.4.

When the pumping test was complete, Frey installed 1,535 feet of 4.5-inch inner diameter (ID) temporary steel casing. The casing was suspended in the borehole by using a mechanical packer. The packer and 4.5-inch casing were intended to isolate the water and gas production zone from the lower portions of the borehole.

After the temporary casing was installed, Boart Longyear (Boart) of Wytheville, Virginia, mobilized to the site to continue advancing the borehole using wet-rotary coring methods. Before the coring activities, Cargill constructed a gravel ramp to provide Boart sufficient clearance to install their BOP on the temporary intermediate casing.

Boart advanced the borehole from 1,556 ft bgs to total depth (TD) at 2,486 ft bgs by using a wet- (brine) rotary HQ core barrel, which provides nominally 3.75-inch-diameter corehole and 2.5-inch core. Core was extracted in 10-foot runs. Per Cargill's request, RESPEC's field geologist was only on site part time during coring activities, but while there, the geologist logged the core quality, noted major changes in stratigraphy and water returns (to interpret water-bearing zones), and photographed the core. The bedrock core-quality data are provided in Table 2-1, and Figure 2-1 contains a borehole diagram. Appendix B contains a photographic log of the core collected..

Following completion of coring activities and Boart demobilization, Cargill removed the gravel ramp and restored the test hole surface elevation to the same approximate elevation that existed during the air-rotary drilling activities.

2.2 CORE LOGGING

After coring was completed, Dr. William Goodman and Mr. David Gnage (RESPEC) conducted a more detailed logging of the 930 feet of core collected from 1,556–2,486 feet. Figure 2-2 provides lithographic descriptions of the core collected and the gamma log for the cored interval and is also included on the enclosed CD. Section 3.1 discusses the stratigraphic picks based on a comparison of the chip samples, core, and wireline logs.

2.3 OBSERVATION OF GEOPHYSICAL LOGGING

Geophysical logging was conducted by Weatherford International of Muncy, Pennsylvania. Weatherford initially completed wireline logging runs before installing the surface casing (0-590 feet) and the temporary intermediate casing (0-1,555 feet). Weatherford provided the following wireline geophysical logs: gamma ray, resistivity, neutron porosity, density, sonic velocity, and depth. RESPEC's field geologist was on site during geophysical logging to observe the activities and to relay pertinent information to Cargill. The NYSDEC did not require a bond log for the surface casing; therefore, none was run.

After completing the coring activities, Weatherford returned to the site to complete wireline logging of the lower portion of the test hole (1,555–2,486 feet [wireline TD]). This run of wireline logs included gamma ray, resistivity, neutron porosity, density, sonic velocity, depth, and deviation.

Sample Interval						S	ample In	terval		Sample Interval					
Run No.	From	То	Recovery (%)	RQD (%)	Run No.	From	То	Recovery (%)	RQD (%)	Run No.	From	То	Recovery (%)	RQD (%)	
1	1,556	1,566	90	98	34	1,886	1,896	100	100	67	2,216	2,226	100	100	
2	1,566	1,576	100	99	35	1,896	1,906	100	100	68	2,226	2,236	100	100	
3	1,576	1,586	100	100	36	1,906	1,916	100	100	69	2,236	2,246	100	100	
4	1,586	1,596	100	99.5	37	1,916	1,926	100	100	70	2,246	2,256	100	100	
5	1,596	1,606	100	100	38	1,926	1,936	100	100	71	2,256	2,266	100	100	
6	1,606	1,616	100	99.8	39	1,936	1,946	100	100	72	2,266	2,276	100	100	
7	1,616	1,626	100	100	40	1,946	1,956	100	100	73	2,276	2,286	100	95	
8	1,626	1,636	100	100	41	1,956	1,966	100	100	74	2,286	2,296	100	96	
9	1,636	1,646	100	97.5	42	1,966	1,976	100	100	75	2,296	2,306	100	100	
10	1,646	1,656	100	100	43	1,976	1,986	100	100	76	2,306	2,316	100	100	
11	1,656	1,666	100	100	44	1,986	1,996	100	100	77	2,316	2,326	100	100	
12	1,666	1,676	100	100	45	1,996	2,006	100	100	78	2,326	2,336	100	100	
13	1,676	1,686	100	100	46	2,006	2,016	100	100	79	2,336	2,346	100	100	
14	1,686	1,696	100	100	47	2,016	2,026	100	100	80	2,346	2,356	100	100	
15	1,696	1,706	100	100	48	2,026	2,036	100	100	81	2,356	2,366	100	100	
16	1,706	1,716	100	100	49	2,036	2,046	100	100	82	2,366	2,376	100	98	
17	1,716	1,726	100	100	50	2,046	2,056	100	100	83	2,376	2,386	100	100	
18	1,726	1,736	92	100	51	2,056	2,066	100	100	84	2,386	2,396	100	100	
19	1,736	1,746	99	100	52	2,066	2,076	100	100	85	2,396	2,406	100	100	
20	1,746	1,756	100	100	53	2,076	2,086	100	100	86	2,406	2,416	100	100	

Table 2-1. Bedrock Core Quality Log (Page 1 of 2)

		Sample In	iterval		Sample Interval					Sample Interval					
Run No.	From	То	Recovery (%)	RQD (%)	Run No.	From	То	Recovery (%)	RQD (%)	Run No.	From	То	Recovery (%)	RQD (%)	
21	1,756	1,766	100	100	54	2,086	2,096	100	100	87	2,416	2,426	100	100	
22	1,766	1,776	100	100	55	2,096	2,106	100	100	88	2,426	2,436	100	100	
23	1,776	1,786	100	100	56	2,106	2,116	100	100	89	2,436	2,446	100	100	
24	1,786	1,796	100	100	57	2,116	2,126	100	100	90	2,446	2,456	100	100	
25	1,796	1,806	100	100	58	2,126	2,136	100	100	91	2,456	2,466	100	100	
26	1,806	1,816	100	100	59	2,136	2,146	100	100	92	2,466	2,476	100	100	
27	1,816	1,826	100	100	60	2,146	2,156	100	100	93	2,476	2,486	100	100	
28	1,826	1,836	100	100	61	2,156	2,166	100	100						
29	1,836	1,846	100	100	62	2,166	2,176	100	100						
30	1,846	1,856	100	100	63	2,176	2,186	100	100						
31	1,856	1,866	100	100	64	2,186	2,196	100	100						
32	1,866	1,876	100	100	65	2,196	2,206	100	100						
33	1,876	1,886	100	100	66	2,206	2,216	100	100						

Table 2-1. Bedrock Core Quality Log (Page 2 of 2)

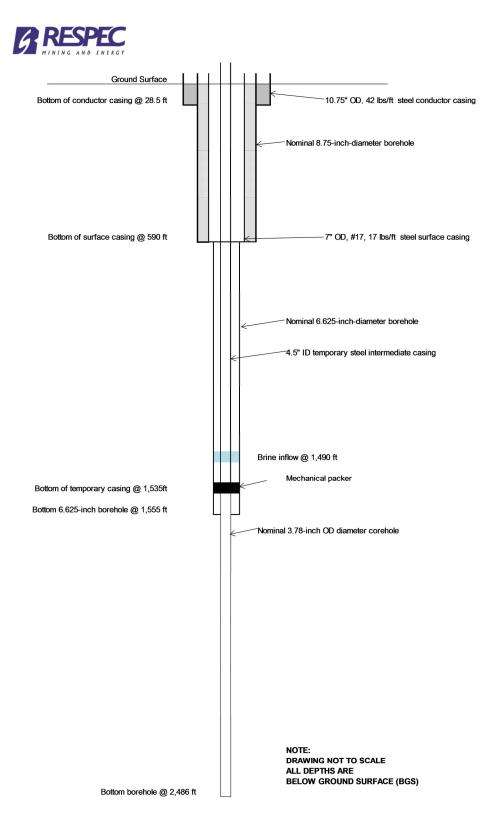


Figure 2-1. Borehole Diagram.

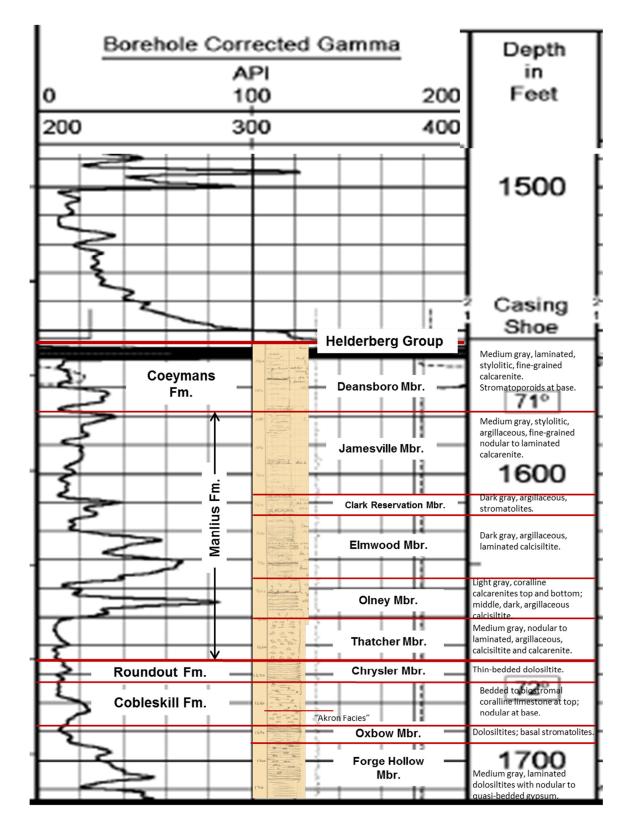


Figure 2-2. Lithologic Descriptions of the Cored Formations (Page 1 of 5).

RSI-2099-13-010

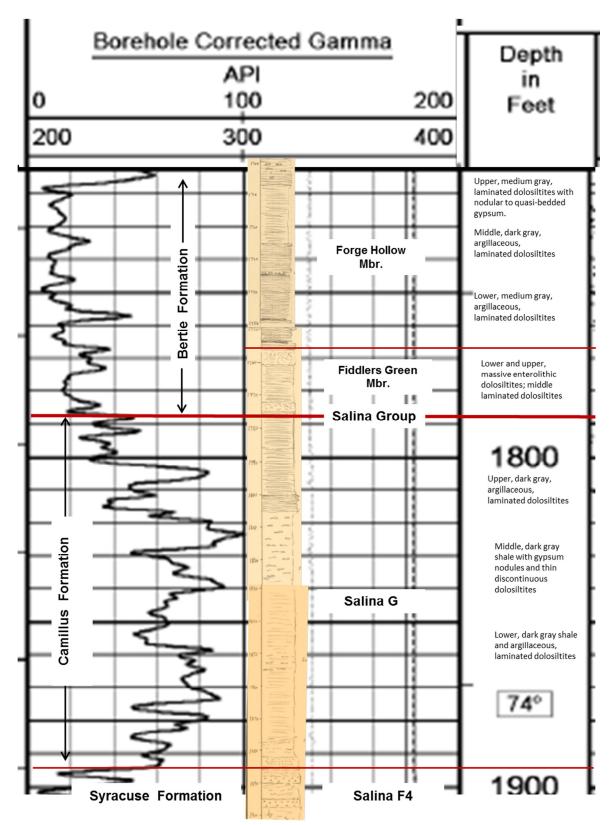


Figure 2-2. Lithologic Descriptions of the Cored Formations (Part 2 of 5).

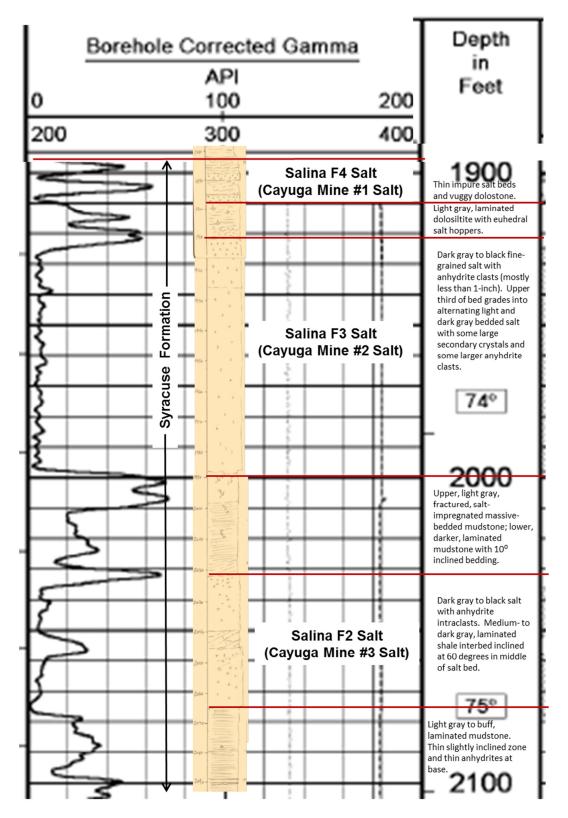


Figure 2-2. Lithologic Descriptions of the Cored Formations (Part 3 of 5).

RSI-xxx-09-xxx

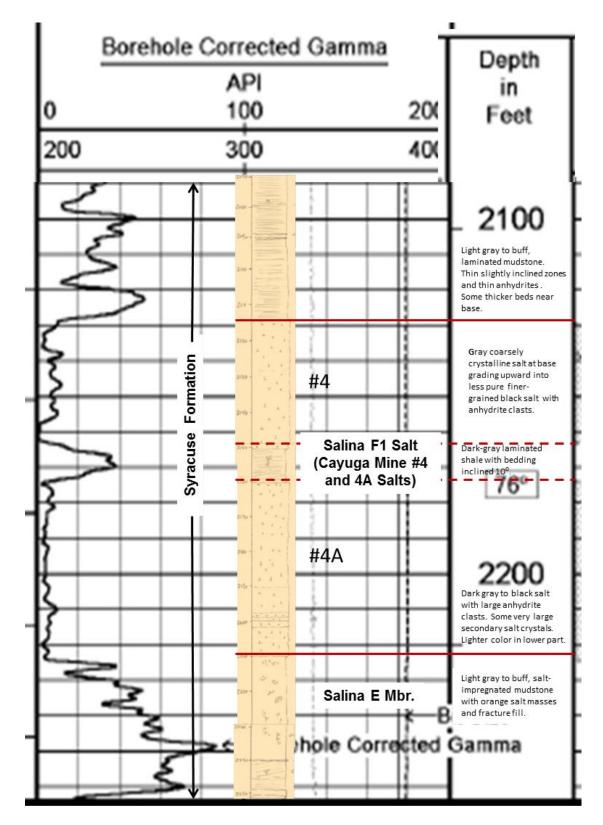


Figure 2-2. Lithologic Descriptions of the Cored Formations (Part 4 of 5).

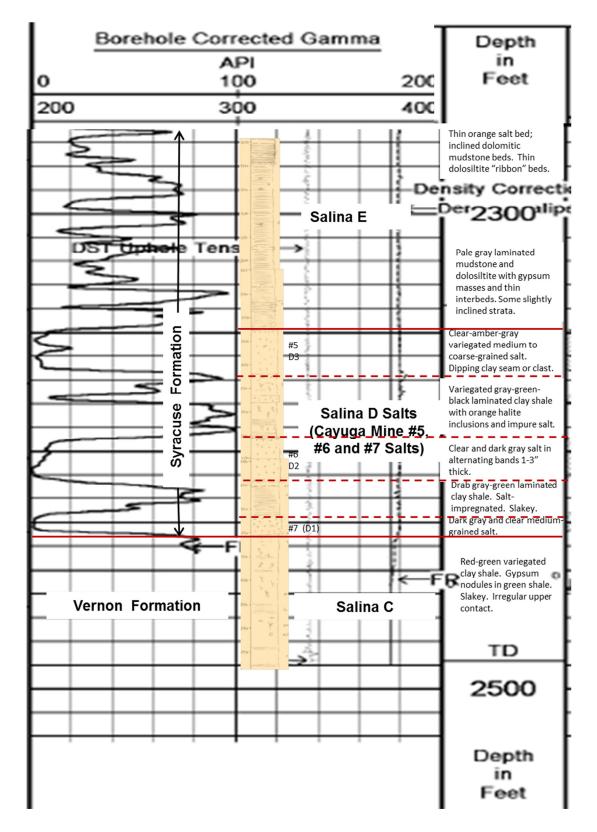


Figure 2-2. Lithologic Descriptions of the Cored Formations (Part 5 of 5).

Copies of the wireline logs are included in Appendix C and in the attached CD. Note that while Weatherford logged the test hole in three sections, the suite of logs for the first section (0–590 feet) required two runs; only one run was required for each of the second (590–1,555 feet) and third (1,555–2,488 feet) sections. Weatherford provided logs for the second run for the first section. Weatherford's "Run 3" log covers the second section. For the third section, Weatherford did not report the sections individually but, instead, provided a combined log (Run #5) that covers the depth interval from surface to TD.

2.4 AQUIFER PUMPING TEST

No aquifer testing was originally specified for the stratigraphic hole. Because of water encountered in the lower Onondaga/Oriskany at a field-estimated water inflow of 10–15 gpm, Cargill requested that a pumping test be conducted to better understand the potential water inflow to the new shaft (#4 Shaft) during construction. Cargill was concerned that a protracted 10–15 gpm inflow rate would exceed their water-handling capacity.

The basic pumping testing procedure is outlined below. Note that the first attempt to conduct the pumping test was cut short because of a pump malfunction. The issue was resolved, and the test was conducted. The results of the testing will be discussed in Section 3.3.

Before beginning the pumping test, the static water level was measured by using a sonic water-level meter and a "graduated" pressure transducer cable. The water level was estimated to be approximately 500 ft bgs, or 950 above the production zone.

Frey Drilling, Inc. provided and installed a 15-horsepower submersible pump capable of producing 30 gpm from a depth of 1,450 feet with zero head. Cargill provided on-site fluid storage of approximately 60,000 gallons with arrangements to remove additional fluids if needed.

- 1. The borehole was vented of gas via the valve system currently in place on the wellhead.
- 2. The pump and discharge piping were equipped with a check valve immediately above the pump to prevent the back-flow of the water column into the well when the pump was shut off at the end of the test.
- 3. The pump and discharge tubing were run into the borehole to a depth of 1,435 ft bgs.
- 4. A 300 psi pressure transducer was attached to the piping string approximately 415 feet above the pump (1,020 ft bgs). The transducer was attached to a vented communication cable, which was attached to the discharge piping and run to the surface.
- 5. The borehole was allowed to equilibrate after pump installation.

- 6. A logging flow meter was installed near the wellhead to monitor flow rate. A second analog flow meter was installed upstream of the logging flowmeter as back-up. (Note that both meters failed during the test; however, manual flow readings were collected and used.)
- 7. Discharge piping was attached to a manifold to allow discharge of waste water/brine to multiple storage vessels.
- 8. The borehole was initially intended to be pumped at a steady rate of 15 gpm for a period of 12 hours, or until the water level decreased to within 50 feet of the transducers. During the failed first attempt at the pumping test, it was determined that the water-bearing zone could not sustain this rate. Based on the limited pumping rate information from the failed pumping test, a pumping rate of 6 gpm was targeted. After 60 minutes of pumping at 6 gpm, it was determined that the water-bearing zone could not sustain a rate of 6 gpm either. A rate of approximately 3 gpm was then set approximately 165 minutes after beginning the test. This rate was maintained until the test was terminated after a head decrease of 500 feet (252.3 psi) at the 13-hour mark.
- 9. The borehole was then shut-in, and the borehole was allowed to recover for 4.25 days (almost 8 times the pumping period).
- 10. After the recovery period, the pump and piping were pulled out of the borehole, the pressure transducers were recovered, and the transducer data were downloaded.

The discharge brine generated during the pumping test was contained in a 20,000-gallon tank.

2.5 WATER SAMPLING AND ANALYSIS

RESPEC anticipated collecting water samples from approximately eight water-bearing zones above the cored interval before drilling. However, only one water-bearing zone was encountered above the cored interval. As discussed above, the water-bearing zone was encountered at approximately 1,490 ft bgs. RESPEC's field geologist collected two samples from this zone, one return-water sample from the zone during air-rotary drilling, and one discharge sample at the 9-hour mark of the pumping test conducted. Before collecting the samples for laboratory analysis, RESPEC collected general chemistry field parameters (temperature, pH, conductivity, oxidation-reduction potential, and salinity). RESPEC also collected field parameters throughout the pumping test to ensure the sample collected was representative of the discharge brine. Table 2-2 contains a summary of the field parameter data collected.

In addition to the samples collected from the water-bearing zone in the lower Onondaga/Oriskany interval, RESPEC collected a sample of drilling brine used during coring. Boart did not report to RESPEC any evidence of water-bearing zones in the cored interval.

Sample I.D.	Date	Depth (ft bgs)	Time	Temperature (°C)	pH (SU)	Conductivity (ms/cm)	ORP (eV)	Salinity (ppt)	Laboratory Analysis
#18-1490	05/22/13	1,490	9:00	25.3	9.4	151.90	-43.8	123.5	Yes
CH#18-PT-001	06/19/13	1,440	13:00	17.3	7.3	205.80	-132.8	199.4	No
Water-Quality Check	06/27/13	1,440	9:00	16.5	6.5	201.30	-143.5	174.9	No
Water-Quality Check	06/27/13	1,440	12:35	18.4	6.2	209.10	-230.9	185.5	No
Water-Quality Check	06/27/13	1,440	14:20	18.3	6.3	207.60	-273.5	183.7	No
Water-Quality Check	06/27/13	1,440	15:50	18.3	6.2	208.50	-274	185.9	No
CH#18-PT-002	06/27/13	1,440	16:50	18.2	6.2	210.40	-277.1	187.0	Yes
CH#18-drillingbrine	07/16/13	NA	14:00	27.6	7.3	223.20	-265.5	204.0	Yes

Table 2-2. Water-Quality Field Parameters

14

°C = degrees Celsius

SU = standard units

ms/cm = millisiemens per centimeter

eV = electrovolts

ppt = parts per thousand

NA = Not Applicable

The water samples collected were analyzed for stable isotopes (δ deuterium and δ ¹⁸O) and tritium at the Isotech Laboratories, Inc. of Champaign, Illinois, and major ions (alkalinity, sulfate, total dissolved solids, chloride, and select metals) at Paradigm Environmental Services, Rochester, New York. Table 2-4 provides an analytical sample summary. The results of the laboratory analyses are discussed in Section 3.3.

Sample I.D.	Location	Date	Method	Parameters
				Metals (Ca, Mg, Na, K)
	depth of 1,490 ft bgs			Chloride
				Sulfate
#18-1490	collected during rotary	5/22/13	Grab	Alkalinity
	drilling			Total Dissolved Solids
				Density
				Deutrium, • ¹⁸ O, Tritum
				Metals (Ca, Mg, Na, K)
	depth of 1,440 ft bgs, during pumping test		5/22/13Chloride5/22/13GrabChloride5/22/13GrabAlkalinitTotal DisDensityDensityDeutrium6/27/13GrabAlkalinit6/27/13GrabAlkalinit7/16/13GrabMetals (Chloride7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7/16/13GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7GrabAlkalinit7Grab <t< td=""><td>Chloride</td></t<>	Chloride
				Sulfate
CH#18-PT-002		6/27/13		Alkalinity
				Total Dissolved Solids
				Specific Gravity
				Deutrium, • ¹⁸ O, Tritum
				Metals (Ca, Mg, Na, K)
	Drilling fluid recirculation tank	7/16/13		Chloride
				Sulfate
CH#18-drillingbrine			Grab	Alkalinity
				Total Dissolved Solids
				Specific Gravity
				Deutrium, • ¹⁸ O, Tritum

Table 2-3. Water-Sample Analysis Summary Table

2.6 PLUG AND ABANDONMENT

RESPEC understands that Frey plugged and abandoned (P&A) Corehole #18 on September 26, 2013, in accordance with an NYSDEC-approved P&A plan under Cargill's supervision.

3.0 COMPLETION OF DATA ANALYSIS AND REPORTING

To assist Cargill with compiling data for sinking the #4 Shaft, RESPEC completed the following tasks associated with the analysis of the test hole data:

- Stratigraphic Picks
- Water-Bearing Zone Definition and Aquifer Determinations
- Interpretation of Formation Water Geochemical Data
- Pumping Test Data Analysis
- Geomechanical Laboratory Testing of Core Samples
- Reporting on Findings of the Test Hole.

Each of these tasks is described in the following sections.

3.1 STRATIGRAPHY AND STRUCTURE

The following sections provide general background information on the bedrock stratigraphy and structure in the vicinity of the Cayuga Mine and the specific findings in Corehole #18.

3.1.1 Stratigraphy

RESPEC reviewed the chip samples collected, wireline logs, and the core collected during the field program to determine stratigraphic picks for the major formations and members in the Corehole #18. Table 3-1 presents bedrock formations from ground surface to the base of the evaporite-bearing Salina Group. The stratigraphic picks for these formations were based on the chip samples and core, and the corresponding formation picks were based on the wireline logs. Figure 3-1 presents the stratigraphic picks for the major formations and the gamma ray wireline log with select photographs.

The bedrock formations in the rock sequence penetrated by Corehole #18 span in age from Upper Silurian to Upper Devonian. The youngest rocks exposed in the area are Upper Devonian shales. The Tully Limestone, which forms a distinctive marker horizon, is bounded by the major shale sequences of the Genesee shales above and the Hamilton Group below. The combined thickness of this shale-dominated interval is approximately 1,500 feet in Corehole #18.

A major carbonate-dominated interval is beneath the Devonian shales. In descending order, this sequence of "Siluro-Devonian" carbonates includes the following units: Cherry Valley Limestone, Union Springs Shale, Onondaga Limestone, Oriskany Sandstone, Helderberg Group, Rondout Dolostone, and the Bertie Group. The thickness of this "carbonate beam" over the Silurian evaporite sequence is approximately 385 feet in Core Hole #18.

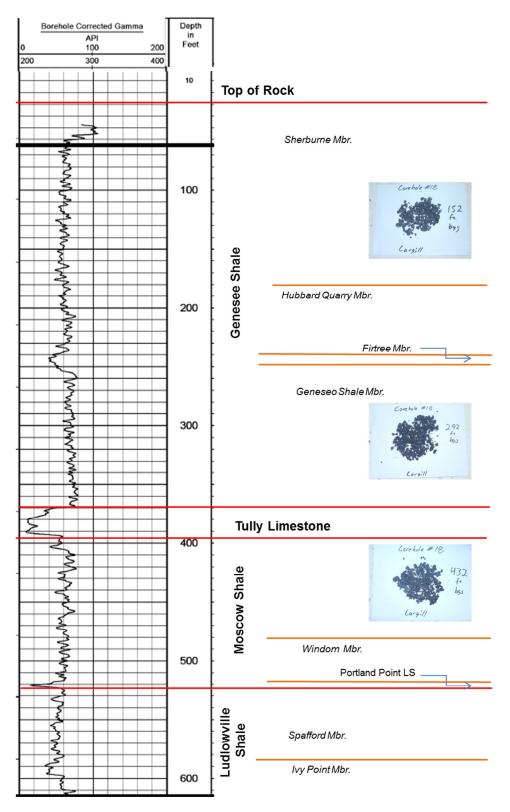
	Top of	Elevation (ft msl)	Thickness (ft)	Combine			
Depth to Top of Formation	Formation Based on Chips/Core (ft bgs)			Top of Formation Based on Wireline (ft bgs)	Elevation (ft msl)	Thickness (ft)	Comments
Overburden Soils	0	784		0	784		
Genesee Shales	26.8	757.2		26.8	757.2	345.2	Bottom of conductor casing
Sherburne Member				28.5	755.5	151.5	
Hubbard Quarry Member				180	604	62	
Firtree Member				242	542	5	
Geneseo Shale Member				247	537	125	
Tully Limestone				372	412	23	Samples collected just before and just after Tully
Hamiliton Group							
Moscow Shale	372	412		395	389	132	
Kashong Member				395	389	85	
Windom				480	304	42	
Portland Point Limestone				522	262	5	
Ludlowville Shale				527	257	283	
Spafford Member				527	257	55	
Ivy Point Member				582	202	30	
Otisco Member				612	172	168	
Centerfield Member				780	4	30	

Table 3-1. Stratigraphic Picks (Page 1 of 4)

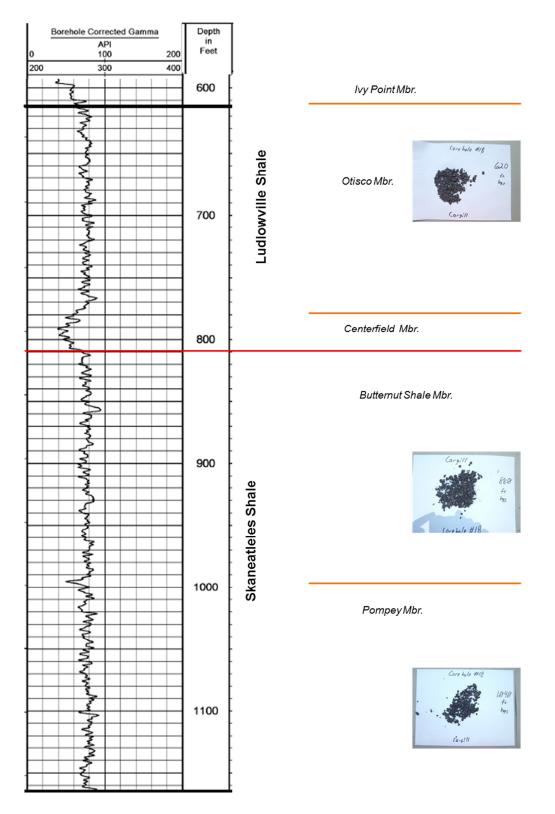
	Top of Formation Based on Chips/Core (ft bgs)	Elevation (ft msl)	Thickness (ft)	Combine			
Depth to Top of Formation				Top of Formation Based on Wireline (ft bgs)	Elevation (ft msl)	Thickness (ft)	Comments
Skaneatleles Shale				810	-26	525	
Butternut Shale Member				810	-26	188	
Pompey Member				998	-214	219	
Delphi Station Member				1,217	-433	95	
Mottville Member				1,312	-528	23	
Marcellus	1,300	-516		1,335	-551	117	
Oatka Creek Member				1,335	-551	83	
Cherry Valley LS	1,405	-621		1,418	-634	2	
Union Springs Shale				1,420	-636	32	
Onondaga Limestone	1,430	-646		1,452	-668	40	
Seneca Member				1,452	-668	26	
Undifferentiated				1,478	-694	14	Moorehouse, Nedrow, Edgecliff Members
Oriskany-Carlisle Center	1,485	-701		1,492	-708	8	Reworked Oriskany at base of Onondaga
<u>Helderberg Group</u>	1,515	-731	173	1,500	-716		All formation thicknesses from here to TD are based on the core samples.
Coeymans Formation-Deansboro Member	1,515	-731	63	1,500	-716		

Table 3-1. Stratigraphic Picks (Page 2 of 4)

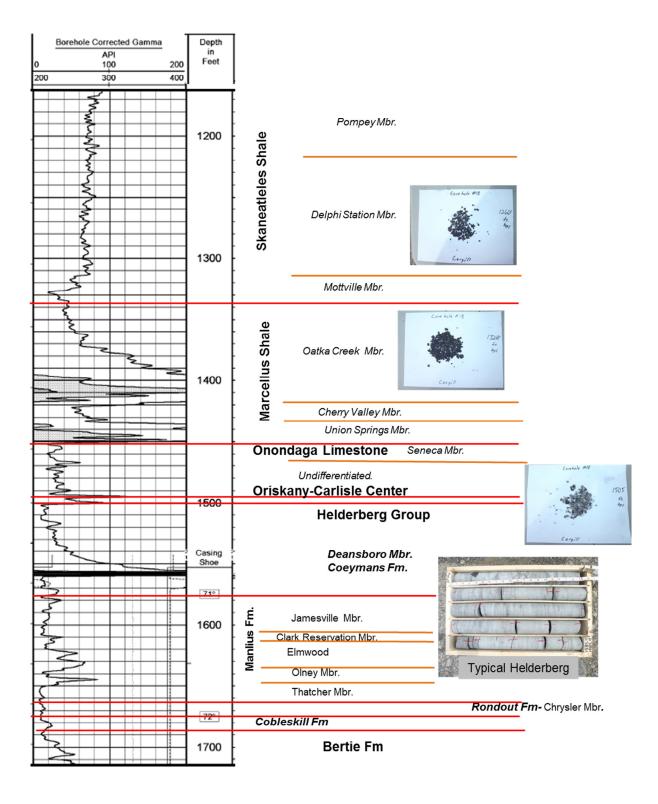
Depth to Top of Formation	Top of		Thickness (ft)	Combined	l Log (Run #	5)	
	Racad on	Elevation (ft msl)		Top of Formation Based on Wireline (ft bgs)	Elevation (ft msl)	Thickness (ft)	Comments
Manlius Formation	1,578	-794	86	1,575	-791		
Manlius Formation -Jamesville Member	1,578	-794	30	1,575	-791		
Manlius Formation-Clark Reservation Member	1,608	-824	5				
Manlius Formation-Elmwood Member	1,613	-829	21	1,610	-826		
Manlius Fm-Olney Member	1,634	-850	16	1,630	-846		
Manlius Fm-Thacher Member	1,650	-866	14	1,645	-861		
Rondout Fm-Chrysler Member	1,664	-880	8	1,668	-884		
Cobleskill Formation	1,672	-888	16	1,683	-899		
Bertie Formation	1,688	-904	87	1,702	-918		
Oxbow Member	1,688	-904	4	1,702	-918		
Forge Hollow Member	1,692	-908	63	1,716	-932		
Fiddlers Green	1,755	-971	20	1,760	-976		
<u>Salina Group</u>	1,775	-991		1,800	-1,016		
Camillus Shale/Salina G	1,775	-991	112	1,800	-1,016		
Syracuse Formation	1,885	-1,101		1,896	-1,112		
#1 Salt/F4	1,887	-1,103	24	1,896	-1,112		
#2 Salt/F3	1,911	-1,127	111	1,927	-1,143		
#3 Salt/F2	2,022	-1,238	96	2,036	-1,252		

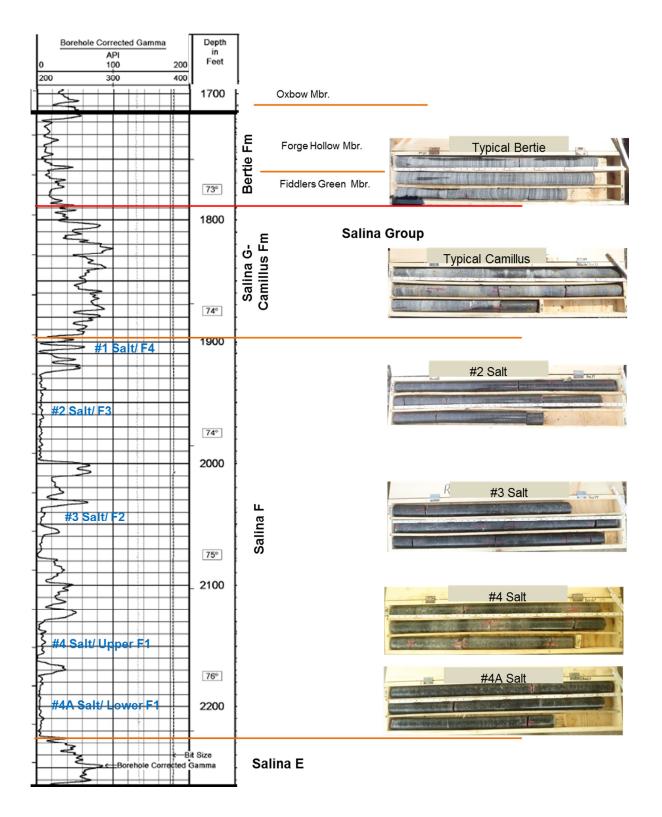

Table 3-1. Stratigraphic Picks (Page 3 of 4)

	Racad an		Thickness (ft)	Combined			
Depth to Top of Formation		Elevation (ft msl)		Top of Formation Based on Wireline (ft bgs)	Elevation (ft msl)	Thickness (ft)	Comments
#4 Salt/Upper F1	2,114	-1,330	46	2,128	-1,344		
#4A Salt/F1	2,160	-1,376	50	2,175	-1,391		
#5 Shales/Dolomites/Salina E	2,210	-1,426	125	2,225	-1,441		
#5 Salt/D3	2,335	-1,551	18	2,348	-1,564		
#6 Claystone	2,353	-1,569	28	2,380	-1,596		
#6 Salt/ D2	2,381	-1,597	17	2,396	-1,612		
#7 Dolomite	2,398	-1,614	14	2,412	-1,628		
#7 Salt/ D1	2,412	-1,628	9	2,425	-1,641		
Vernon Shale / Salina C	2,421	-1,637		2,437	-1,653		


Table 3-1. Stratigraphic Picks (Page 4 of 4)

Blank= not picked


ft msl = feet mean sea level


Figure 3-1. Stratigraphic Formation Picks With Gamma Ray Log and Select Formation Pictures (Page 1 of 5).

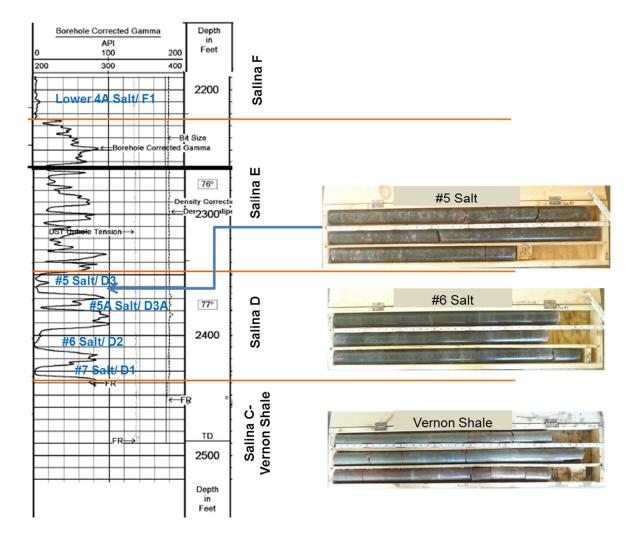

Figure 3-1. Stratigraphic Formation Picks With Gamma Ray Log and Select Formation Pictures (Page 2 of 5).

Figure 3-1. Stratigraphic Formation Picks With Gamma Ray Log and Select Formation Pictures (Page 3 of 5).

Figure 3-1. Stratigraphic Formation Picks With Gamma Ray Log and Select Formation Pictures (Page 4 of 5).

Figure 3-1. Stratigraphic Formation Picks With Gamma Ray Log and Select Formation Pictures (Page 5 of 5).

The salts that have been mined in the Cayuga Lake Valley are assigned to the Silurian Salina Group. Two stratigraphic schemes are applied to these strata in the literature, and the mine has also employed its own numbering system to the salt beds. These three different nomenclatural schemes are cross referenced in Table 3-1.

The traditional New York lithostratigraphic units internal to the Salina Group are (in descending order) the Camillus shale, the Syracuse Formation, and the Vernon Formation. The Camillus shale is also exposed at the #1 salt bed level in the Cayuga Mine. The Syracuse Formation contains all of the salt beds that the shafts of the Cayuga Mine have penetrated. The #1–4A salt beds are concentrated in the upper Syracuse Formation, and the #5–7 salt beds are concentrated at the base of the Syracuse Formation. The two salt-rich zones are separated by approximately 125 feet of interbedded dolostones and shales. The Vernon shale is not salt bearing in the Cayuga Valley, although it does contain the salt beds that are mined farther west in New York. The Vernon shale beds that correlate with the salt-bearing strata mined in the Genesee Valley lie below the base of the deepest salt bed in the Syracuse Formation (i.e., #7 Salt) in the Cayuga Lake Valley and are not of any economic importance locally.

The salt beds that have been penetrated by the shafts of the Cayuga Mine are part of an immense deposit that extends beneath parts of New York; Pennsylvania; West Virginia; Ohio; Michigan; and Ontario, Canada. The salt deposits infilled two separate, juxtaposed sedimentary troughs (the Appalachian and Michigan Basins). The two basins were connected by a narrow channel beneath Lake Erie called the Chatham Sag.

Because the salt beds are so laterally extensive, over the years, stratigraphers have attempted to make correlations and to devise a stratigraphic nomenclature that crosses state lines. The most useful terminology for the salt beds was developed by Mr. Kenneth Landes for the Michigan Basin in the 1940s. He designated internal Salina Group units from A at the base to G at the top. There is little difficulty recognizing the Salina A-G Units in Ohio and New York. In these states, the major salt zones are the Salina B (the lower salts mined in western New York), the Salina D (lower Syracuse #5–7 beds at Cayuga), and the Salina F (upper Syracuse #1–4A beds at Cayuga). The interbedded shales and dolostones separating the #5–7 beds from the #1–4A beds at Cayuga comprise the Salina E. The Camillus shale that caps the salt sequence is equivalent to the Salina G.

Stratigraphers have numbered the salt beds in each interval from the bottom up, which is opposite to the way the engineers at the Cayuga Mine have numbered them. For example, the #1 salt bed, as it was named at the Cayuga Mine, is recognized regionally as the F4 Salt. The combined #4–4A Salt is recognized regionally as the F1 Salt. The #5 salt is the D3 Salt, the #6 Salt is the D2 Salt, and the #7 Salt is the D1 Salt.

3.1.2 Structure

Bedrock structures at the Cayuga Mine include folds, faults, and joints. The most prominent feature is the Fir Tree Point Anticline, which is the major east-west trending fold whose axis

crosses Cayuga Lake between Myers Point and Portland Point. The smaller-scale structures observed in the mine at the #1 Salt, the #4 Salt, and the #6 Salt levels are related to regionally extensive tectonic deformation that produced the Fir Tree Point Anticline and even larger folds to the south.

Smaller-scale folds and faults occur on the limbs and in the core of the Fir Tree Point Anticline. The extreme relief on the #4 salt bed is related to buckling in the core of the larger fold. The well-known thrust fault in the Tully Limestone in the quarry above the mine occurs along the crest of the fold. Faults are also known to occur on the limbs of the fold at the Onondaga Limestone level based on well control and can also be clearly observed in seismic data.

The data collected from Corehole #18 have been incorporated into existing data RESPEC previously compiled for Cargill. These results are presented in the following paragraphs.

Salt Thickness. In Corehole #18, the #6 salt is approximately 16 feet thick. Based upon interpolation of well control, the #6 salt thickens progressively from 16 to 20 feet in a northward direction from Corehole #18 in the Northern Reserves, which is illustrated in Figure 3-2.

Cargill has expressed an interest in the nature of the #5 salt at the in the area of Corehole #18. The #5 salt is approximately 15 feet thick in Core Hole #18. Based on well log interpretation the #5 salt increases in thickness to the west, with a thickness depression over the northeast corner of the old level 4 mine workings. Figure 3-3 provides an isopach map of the #5 salt.

Salt Purity. In Corehole #18, the #6 salt appears to maintain its normal purity, as seen in the previous logs. Based upon gamma ray logs from area wells, the purity of the #6 Salt in the region inclusive of the Northern Reserves generally looks consistent with the quality of the salt bed where mining has already occurred.

Salt Structure. No evidence of faulting was noted in the seismic reflection data north of the Frontenac Point Anomaly. In addition, structural contour maps in Figures 3-4 through 3-8, for the #6 Salt, the base of the #4 Salt (Salina E), the top of the salt sequence (Salina F), the top of the Camillus shale, and the top of the overlying carbonates all appear relatively simple.

In Corehole #18, the banding in the #6 salt is near-horizontal. There is some inclination of bedding in the #4 and #3 Salts. Dips as high as 60 degrees are noted but do not appear to be representative of large intervals within the sequence. Compressional deformation of the salt beds by internal shortening (i.e., thickening) appears to be responsible for the inclined strata in the #4 and #3 salt beds.

Log sections for the F1 Salt (#4 Salt) in the Zeifle #1, Dunkle, and Campion wells also suggest some tectonic deformation in the region surrounding the Northern Reserves. The typical bedding sequence for the F salts is disrupted, the interval appears thicker, and the F1 Salt is less pure (see Figure 3-6).

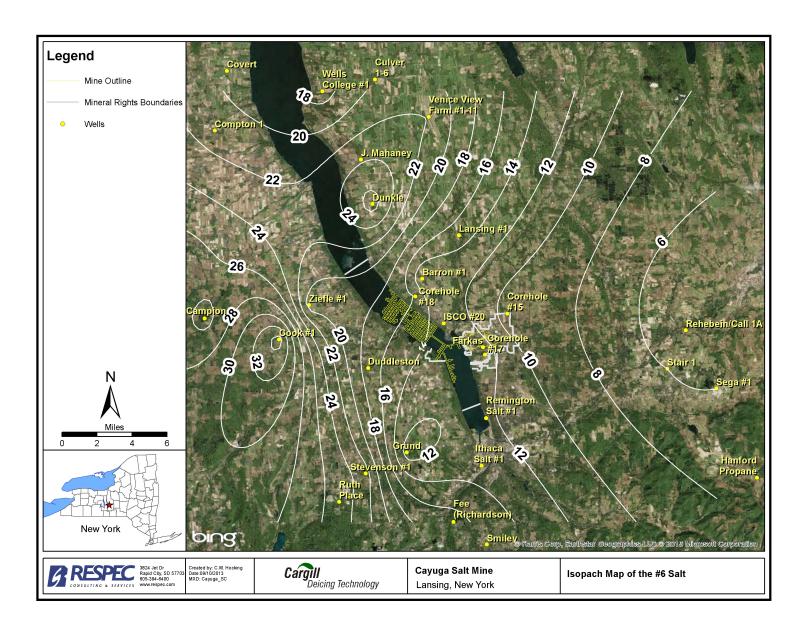


Figure 3-2. Isopach Map of the #6 Salt.

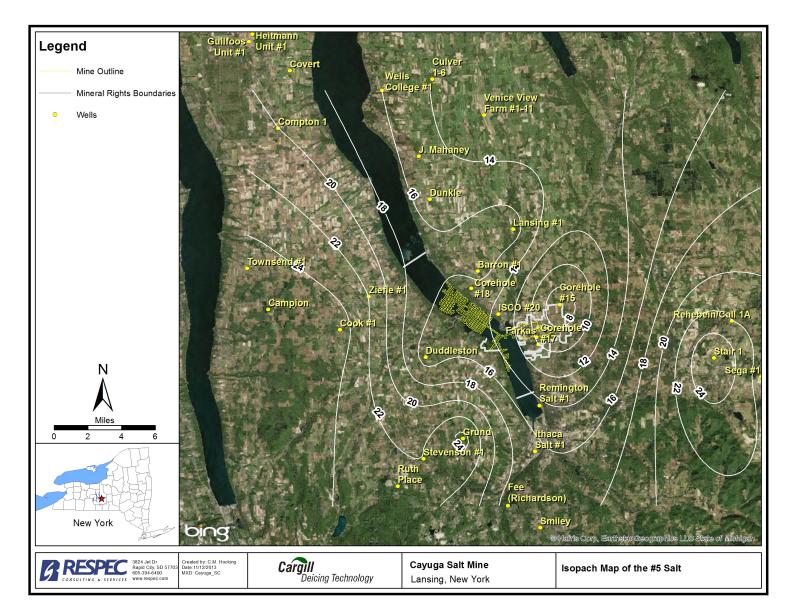


Figure 3-3. Isopach Map of the #5 Salt.



Figure 3-4. Structural Contour Map of the Top of the #6 Salt.

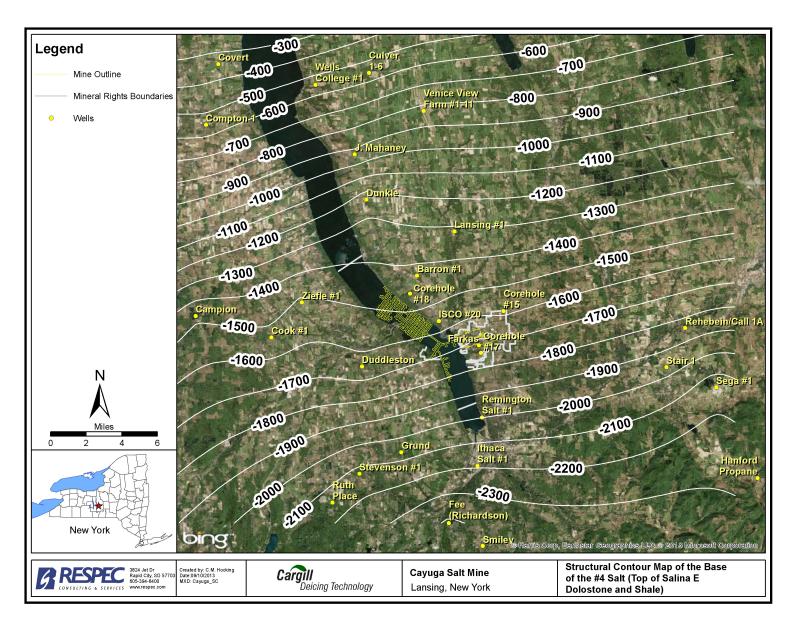


Figure 3-5. Structural Contour Map of the Base of the #4A Salt (Top of the Salina E Dolostone and Shale).

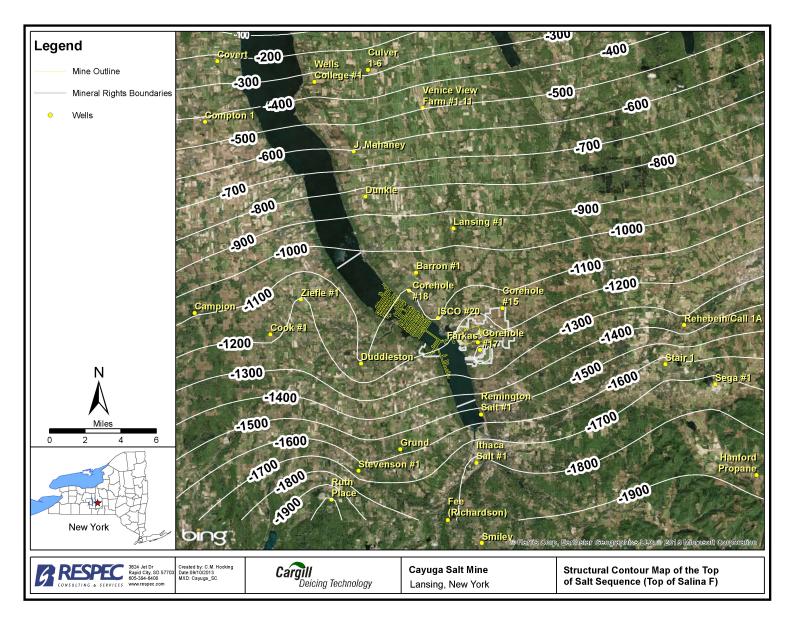


Figure 3-6. Structural Contour Map of the Top of the Salt Sequence (Salina F).

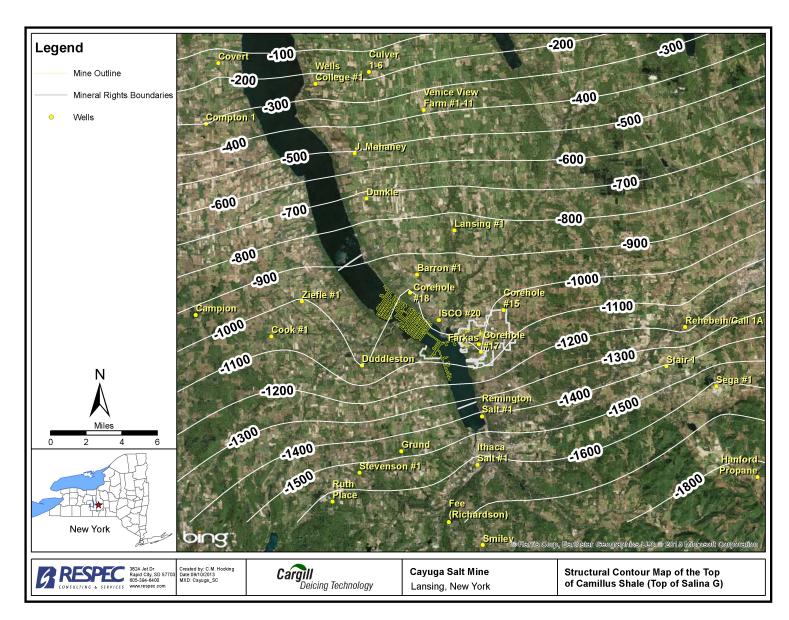


Figure 3-7. Structural Contour Map of the Top of the Camillus Shale (Salina G).

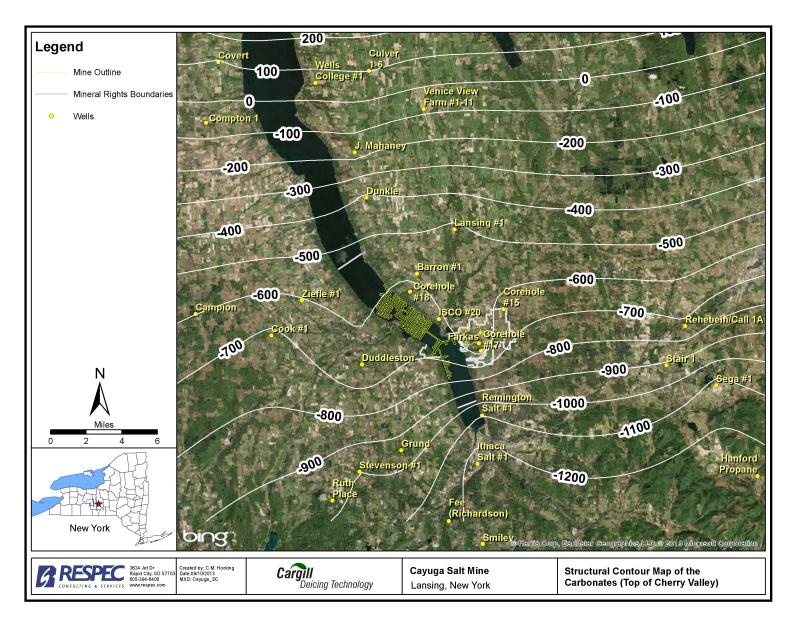


Figure 3-8. Structural Contour Map of the Carbonates (Top of Cherry Valley).

3.2 WATER-BEARING ZONE DEFINITION AND SUSTAINED SHAFT EXCAVATION INFLOW ESTIMATE

RESPEC analyzed the data collected during the installation of Corehole #18 to define potential water-bearing zones that will be passed through during sinking the #4 Shaft. In close proximity to the mine's current workings beneath the eastern uplands, the base of water can reasonably be expected to be at, or above, the base of the Bertie Group. Water in Corehole #18 was encountered at approximately 1,490 ft bgs in the Oriskany Sandstone. The flow rate from the Oriskany Sandstone was estimated in the field at the time of drilling to be 10 gpm; however, the subsequent pumping test suggested that the sustained inflow rate is approximately 3 gpm.

Gas was observed in the Oriskany Sandstone at 1,505 ft bgs. The estimated production rate was approximately 13,300 cfd.

3.2.1 Pumping Test Data Analysis

As stated in Section 2.4, the borehole was not able to sustain a pumping rate of approximately 3 gpm without significant drawdown, and the test was terminated at the 13-hour mark after a head decrease of 500 feet (252.3 psi). Figure 3-9 illustrates the response of the pumping well versus time in feet of displacement (i.e., drawdown).

RESPEC used AQTESOLV, which is a commercially available and widely used program, to analyze the pumping test data. RESPEC selected the Dougherty and Babu [1984] solution for a pumping test in an confined aquifer with wellbore storage to analyze the data. Copies of the AQTESOLV solution data are presented in Appendix D and the digital pumping test transducer data are included on the attached CD.

Figure 3-10 presents the displacement data and the predicted type curve versus time for the pumping well. The type curve fits the data fairly well, especially in the early pumping and early recovery time data. The average transmissivity estimated for the well is 1.0 ft²/day with a storativity of 0.00005. The hydraulic conductivity for the test hole is estimated to be 7.0 × 10^{-6} centimeters per second (cm/sec), based on an aquifer thickness of 50 feet.

3.2.2 Shaft Inflow Rate Estimation

One of the key pieces of information needed from installing Corehole #18 is the potential water inflow to the mine level during shaft construction if Cargill chooses an up-reamed shaft method. RESPEC understands this method involves installing an initial 18-inch pilot hole to the mine level, and then attaching the reaming bit, which is then pulled upward to the surface to create the 18-foot opening for the shaft construction. Both of these holes will be open to the mine level to allow any cuttings and fluids encountered to fall to the mine for removal.

RESPEC used the data generated from the Corehole #18 pumping test to develop inflow estimates for an 18-inch-diameter borehole and an 18-foot-diameter shaft. The pump test yielded an estimate of 7.0×10^{-6} cm/s for the average hydraulic conductivity of the Oriskany

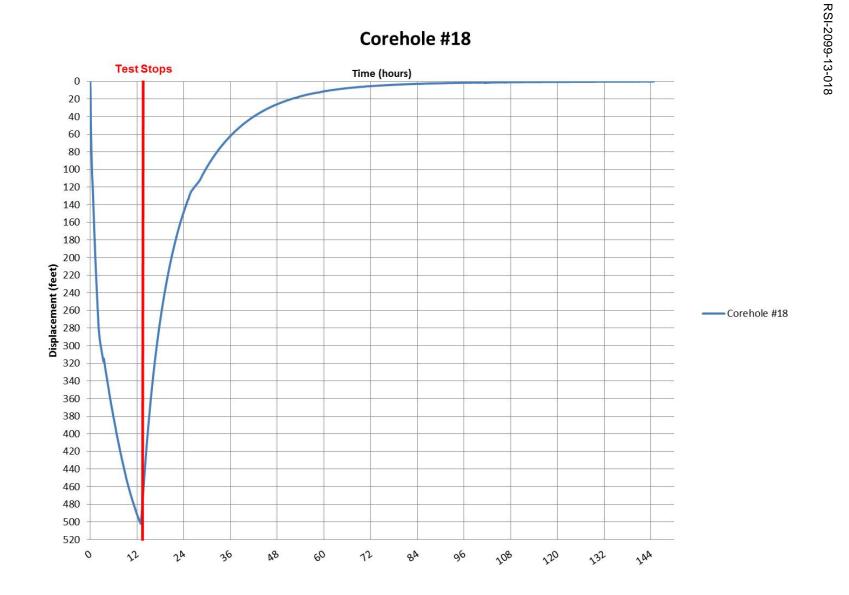


Figure 3-9. Corehole #18 Response to Pumping (Displacement Versus Time).

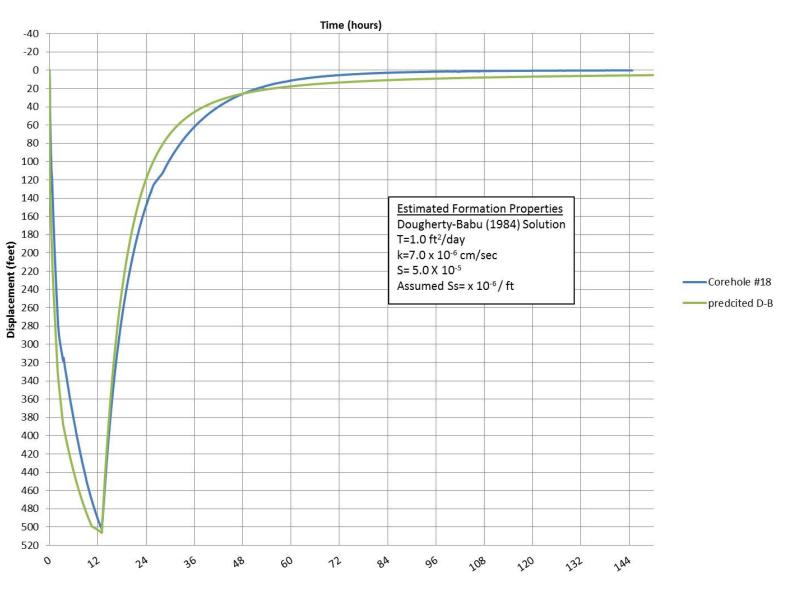


Figure 3-10. Corehole #18 Response to Pumping Compared to the Predicted Response to Pumping.

Sandstone. Considering the lithology and depth of the formation, this estimate seems reasonable. As illustrated in Figure 3-10, the drawdown predicted using this estimate is an excellent match to the drawdown data from the test. Because a single-well pump test cannot yield a reliable estimate of the storativity of the units, RESPEC assumed a typical value of 10⁻⁶ per foot for the specific storage. The estimate of the hydraulic conductivity is not particularly sensitive to this assumption.

Using the hydraulic conductivity estimate and the assumed value of specific storage, RESPEC used AQTESOLV to model the inflow into an 18-inch borehole and 18-foot-diameter shaft maintained at atmospheric pressure by using a forward solution for a constant head model. Considering that the initial fluid level before the pumping test was 502 ft bgs, a drawdown of 979 feet would yield atmospheric pressure down to the base of the Oriskany Sandstone at approximately 1,481 ft bgs. Hard Copies of the AQTESOLV data presented in Appendix D and digital copies of the processed pumping test data for this solution are included in the attached CD.

As illustrated in Figure 3-11, the modeling predicts initial inflow rates of 7 and 14 gpm into 18-inch and 18-foot "wells," respectively. After 100 days, these rates are predicted to drop off to less than 4 and 6 gpm, respectively. The actual inflow rates are suspected to be somewhat greater because the larger diameters of the borehole and shaft are likely to intersect a more permeable feature (e.g., fracture) than the small-diameter corehole intercepted. Hence, these estimated inflow values should be used as a general guide only.

3.3 INTERPRETATION OF FORMATION WATER GEOCHEMICAL DATA

During the drilling activities, the test hole was monitored for water production or water loss (an indicator of a permeable zone). As stated above, only one water-bearing zone was observed in the upper portion of the test hole (0-1,555 ft bgs). No water-bearing zones were observed in the lower portion of the test hole (1,555-2,486 ft bgs)

RESPEC's field geologist submitted three water samples collected during the drilling program for laboratory analysis (Table 2-4). Two of these samples were from the water-bearing zone in the Oriskany Sandstone at approximately 1,490 ft bgs. The third sample was from the drilling fluids used during the coring operations. The results of the laboratory analysis are presented in Table 3-2. RESPEC reviewed and interpreted the major ion, stable isotope, and tritium data for water-return samples.

As shown in Table 3-2, the two water samples interpreted to be Oriskany brine (Samples #18-1490 and CH#18-PT-002) have chloride and total dissolved solids concentrations that are typical of regional conditions for fluids in deep subsurface formations. What is significant to note is the presence of tritium in the formation water samples and their stable isotopic signatures. The detectable tritium indicates the presence of some modern (i.e., post-1960) water. Small quantities of water used during the air-rotary portion of the drilling could possibly have introduced modern meteoritic water into the borehole. Drilling water could explain the

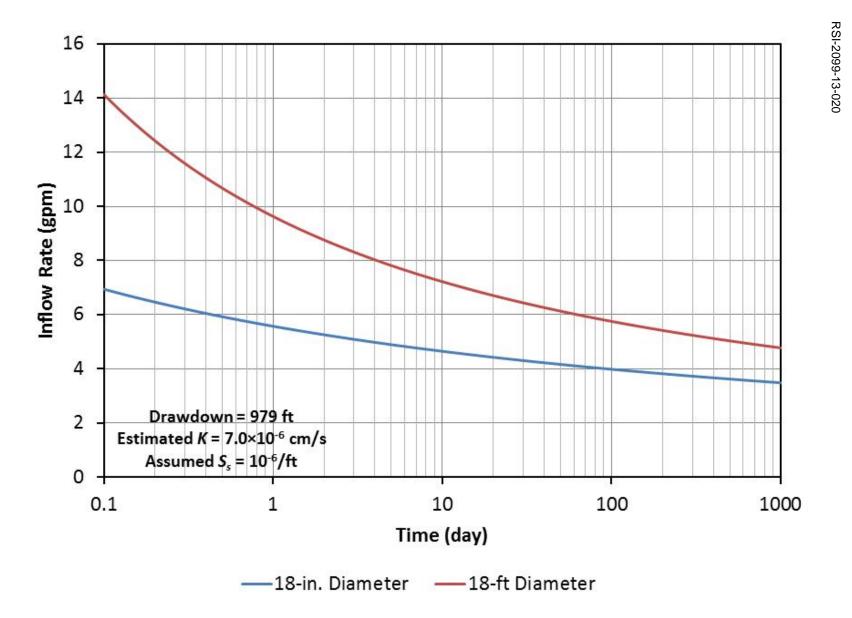


Figure 3-11. Predicted Water Production From an 18-Inch- (Pilot Hole) and 18-Foot- (Shaft) Diameter Borehole.

low levels found in Sample #18-1490, which was collected after penetrating the Oriskany waterbearing zone during the air-rotary drilling program. However, the tritium levels actually increase for the sample collected during the pumping test (Sample CH#18-PT-002). This sample was collected nearly a month after the rotary drilling was completed—a period of time after which artificially introduced fluids would be expected to have been removed through the system. Additionally, Sample CH#18-PT-002 was collected after pumping formation water from the corehole for over 9 hours. If the detected tritium in the initial sample were reflective of drilling fluid contamination, the levels would be expected to decrease from the first sample to the second and not increase. Therefore, RESPEC believes these results reflect the presence of modern (i.e., post-1960) meteoric waters in the formation.

	Sample I.D.		
	#18-1490	CH#18-PT-002	CH#18-drillingbrine
Date	5/22/13	6/24/13	7/16/13
Alkalinity (milligrams per liter [mg/L])	1,310	92	40
Chloride (mg/L)	95,900	130,000	220,000
Density (grams per milliliter [g/mL])	1.16	1.14	1.2
Calcium (mg/L)	12,200	7,040	2,870
Magnesium (mg/L)	2,000	1,880	508
Potassium (mg/L)	1,840	720	393
Sodium (mg/L)	12,300	39,200	102,000
Total Dissolved Solids (mg/L)	178,000	190,000	280,000
Sulfate (mg/L)	282	1,600	5,000
δD H ₂ O (%)	-74.1	-74.9	-40.1
δ ¹⁸ O H ₂ O (%)	-9.99	-10.26	-7.53
Tritum (TU)	0.84	1.94	15.5
Standard Deviation	0.15	0.17	0.3

Table 3-2. Water Sample Analytical Results

Note: Major ion analyses by Paradigm Environment Services and stable isotope and tritium analyses by Isotech Laboratories.

As illustrated in Figure 3-12, the stable isotope samples analyzed fit along the meteoric water line, which is indicative of the Oriskany Formation waters having entered the geologic system via atmospheric precipitation. Low-level detections of tritium also exist in the Oriskany samples. This tritium could be residual drilling fluid contamination from the air-rotary, but it could also mean some post-1960 water has found its way into the local Oriskany section. The detectable tritium cannot be explained as coring fluid, however, because the brine used for coring has a distinctively heavier isotopic signature (note where the drilling fluid sample plots along the meteoric water line in Figure 3-12). At the present time, RESPEC cannot discount

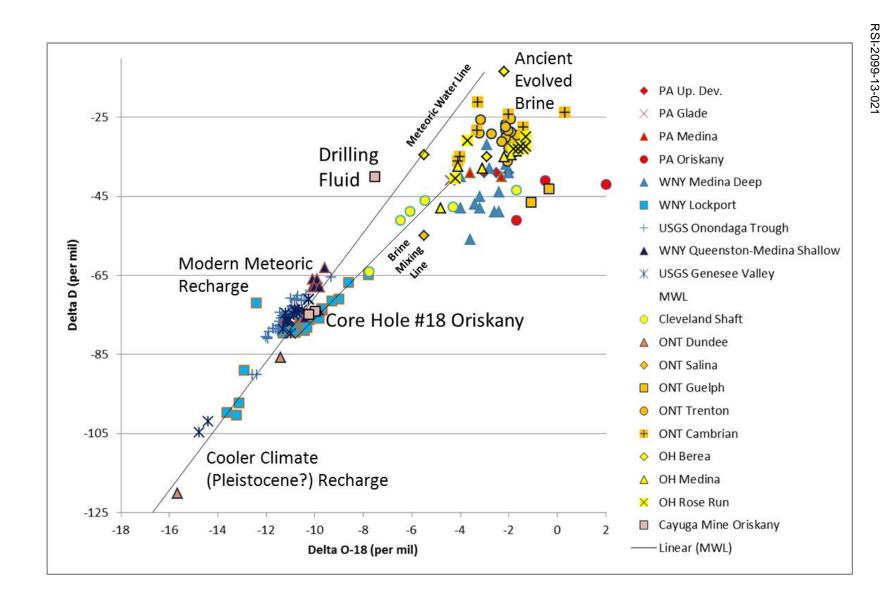


Figure 3-12. Comparison of Corehole #18 Isotope Samples With Regional Isotope Data Points.

the presence of modern water in the Oriskany section in Corehole #18. The lake trough penetrates into the Helderberg Group carbonates approximately 4,000 feet west-southwest Corehole #18. The subglacial aquifer under the sediments in the lake could be the source of this water. However, RESPEC does not believe this is the likely source of the isotopic signature, because the isotopic signature of the fluid does not plot in the portion of the graph indicative of cold climate, glacial recharge.

RESPEC suspects that these isotope results could be the result of fluid losses during decades of solution-mining at Ludlowville. The abandoned solution mining operation is located 3 miles to the south of the Corehole #18 site.

3.4 GEOMECHANICAL LABORATORY TESTING OF CORE SAMPLES

To better understand the bedrock strength above the mine, both for the purposes of the #4 shaft installation and to aid Cargill with its mine stability studies, and to understand the nature of the salt in the area of #4 shaft, geomechanical testing samples were selected. The emphasis of the testing was on the strength of the carbonate strata above the salts (Helderberg Group through the Camillus Formation) and the potentially mined salts. For the purposes of this testing, the Helderberg Group and Bertie Formation were treated as one geologic unit, and the sample selection was conducted on a uniform spacing basis through these units. Uniform spacing was also used through the Camillus Formation. RESPEC selected 28 core specimens from the carbonate roof bedrock and select salt zones for geomechanical testing. Table 3-3 presents the core sample depths and the analysis performed. Cargill indicated that additional testing above and beyond these 37 samples may be requested. Both this initial testing and any additional testing will be reported under separate cover from RESPEC's in-house rock mechanics laboratory.

3.5 SUMMARY OF FINDINGS

A brief summary of the findings of Corehole #18 includes the following.

- 1. The stratigraphy in the area of the test hole was typical of regional stratigraphy.
 - a. The #6 Salt currently mined by Cargill is approximately 16 feet thick and appears to be of similar purity to the currently mined sections. The #4, #4A lower, and #5 salts, which are of potential interest to Cargill, are 47 feet, 50 feet, and 15 feet in thickness, respectively.
 - b. No evidence of faulting exists at the #6 Salt level in Corehole #18.
- One water-bearing zone (in the Oriskany-Onondaga section) was encountered during the installation of Corehole #18. This zone produced a sustainable flow rate of less than 3 gpm. Computer modeling of the zone's production, based on a pumping test, estimates

initial production rates for an 18-inch pilot hole and 18-foot open shaft of 7 gpm and 14 gpm, respectively, which will decrease to 4 gpm and 6 gpm, respectively, over time.

3. Water geochemistry indicates the presence of modern meteoric water in the Oriskany Sandstone could potentially be the result of decades of solution mining between the current mine shaft location and the #4 Shaft location.

Sample Depth	Sample Formation	Analytical Parameters
1,559-1,559.6	Carbonates	Triaxial Compression
1,564.9-1,565.6	Carbonates	Uniaxial Compression, Brazilian
1,583.8-1,584.4	Carbonates	Triaxial Compression
1,609.2-1,609.8	Carbonates	Triaxial Compression
1,616.6-1,617.4	Carbonates	Uniaxial Compression, Brazilian
1,635.4-1,636	Carbonates	Triaxial Compression
1,660.4-1,661.1	Carbonates	Triaxial Compression
1,664.8-1,665.7	Carbonates	Uniaxial Compression, Brazilian
1,683.25-1,683.9	Carbonates	Triaxial Compression
1,708.7-1,709.5	Carbonates	Triaxial Compression
1,715-1,716	Carbonates	Uniaxial Compression, Brazilian
1,733–1,734	Carbonates	Triaxial Compression
1,759.6-1,760.7	Carbonates	Triaxial Compression
1,764.8-1,765.8	Carbonates	Uniaxial Compression, Brazilian
1,778.8-1,779.4	Carbonates	Triaxial Compression
1,799.3-1,799.7	Camillus Formation	Uniaxial Compression
1,814.5-1,815	Camillus Formation	Uniaxial Compression
1,832.4-1,833	Camillus Formation	Uniaxial Compression
1,846.8-1,847.2	Camillus Formation	Uniaxial Compression
1,862.9-1,863.3	Camillus Formation	Uniaxial Compression
2,129.6-2,129.95	#4 salt	X Ray Diffraction
2,142.5-2,142.9	#4 salt	X Ray Diffraction
2,338.9-2,339.9	#5 Salt	X Ray Diffraction, Creep Testing
2,345.6-2,346	#5 Salt	X Ray Diffraction
2,348-2,349	#5 Salt	X Ray Diffraction, Creep Testing
2,385.1-2,386	#6 Salt	X Ray Diffraction, Creep Testing
2,389.3-2,390.3	#6 Salt	X Ray Diffraction, Creep Testing
2,395.6-2,396	#6 Salt	X Ray Diffraction

Table 3-3. Summary of Samples Selected for Geomechanical Analysis

Note: the depths reflect the core deep below ground surface.

Carbonates = Helderberg Group through the Bertie Formation

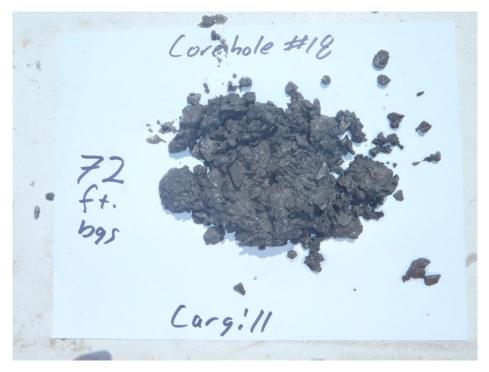
4.0 REFERENCES

Dougherty, D. E and D. K. Babu, 1984. "Flow to a Partially Penetrating Well in a Double-Porosity Reservoir," *Water Resources Research*, Vol. 20, No. 8, pp. 1116–1122.

APPENDIX A

CHIP SAMPLE PHOTOGRAPHS

Figure A-1. Corehole #18: 4–26 Feet Below Ground Surface.


Figure A-2. Corehole #18: Approximately 26 Feet Below Ground Surface. Genesee Formation–Sherburne Member.

RSI-2099-13-024

Figure A-3. Corehole #18: 52 Feet Below Ground Surface. Genesee Shale Formation–Sherburne Member.

RSI-2099-13-025

Figure A-4. Corehole #18: 72 Feet Below Ground Surface. Genesee Shale Formation–Sherburne Member.

RSI-2099-13-026

Figure A-5. Corehole #18: 92 Feet Below Ground Surface. Genesee Shale Formation–Sherburne Member.

RSI-2099-13-027

Figure A-6. Corehole #18: 112 Feet Below Ground Surface. Genesee Shale Formation–Sherburne Member.

Figure A-7. Corehole #18: 132 Feet Below Ground Surface. Genesee Shale Formation–Sherburne Member.

RSI-2099-13-029

Figure A-8. Corehole #18: 152 Feet Below Ground Surface. Genesee Shale Formation–Sherburne Member.

Figure A-9. Corehole #18: 172 Feet Below Ground Surface. Genesee Shale Formation–Sherburne Member.

RSI-2099-13-031

Figure A-10. Corehole #18: 192 Feet Below Ground Surface. Genesee Shale Formation–Hubbard Quarry Member.

Figure A-11. Corehole #18: 212 Feet Below Ground Surface. Genesee Shale Formation–Hubbard Quarry Member.

RSI-2099-13-033

Figure A-12. Corehole #18: 232 Feet Below Ground Surface. Genesee Shale Formation–Hubbard Quarry Member.

RSI-2099-13-034

Figure A-13. Corehole #18: 252 Feet Below Ground Surface. Genesee Shale Formation–Geneseo Shale Member.

RSI-2099-13-035

Figure A-14. Corehole #18: 272 Feet Below Ground Surface. Genesee Shale Formation–Geneseo Shale Member.

RSI-2099-13-036

Figure A-15. Corehole #18: 292 Feet Below Ground Surface. Genesee Shale Formation–Geneseo Shale Member.

RSI-2099-13-037

Figure A-16. Corehole #18: 312 Feet Below Ground Surface. Genesee Shale Formation–Geneseo Shale Member.

Figure A-17. Corehole #18: 332 Feet Below Ground Surface. Genesee Shale Formation–Geneseo Shale Member.

Figure A-18. Corehole #18: 352 Feet Below Ground Surface. Genesee Shale Formation–Geneseo Shale Member.

Figure A-19. Corehole #18: 372 Feet Below Ground Surface. Hamilton Group: Moscow Shale Formation–Kashong Member.

Figure A-20. Corehole #18: 392 Feet Below Ground Surface. Hamilton Group: Moscow Shale Formation–Kashong Member.

Figure A-21. Corehole #18: 412 Feet Below Ground Surface. Hamilton Group: Moscow Shale Formation–Kashong Member.

Figure A-22. Corehole #18: 432 Feet Below Ground Surface. Hamilton Group: Moscow Shale Formation–Kashong Member.

RSI-2099-13-044

Figure A-23. Corehole #18: 452 Feet Below Ground Surface. Hamilton Group: Moscow Shale Formation–Kashong Member.

RSI-2099-13-045

Figure A-24. Corehole #18: 472 Feet Below Ground Surface. Hamilton Group: Moscow Shale Formation–Windom Member.

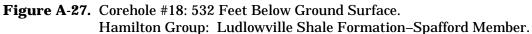


Figure A-25. Corehole #18: 492 Feet Below Ground Surface. Hamilton Group: Moscow Shale Formation–Kashong Member.

Figure A-26. Corehole #18: 512 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Spafford Member.

Corchole # 552 Fr BGS Largill

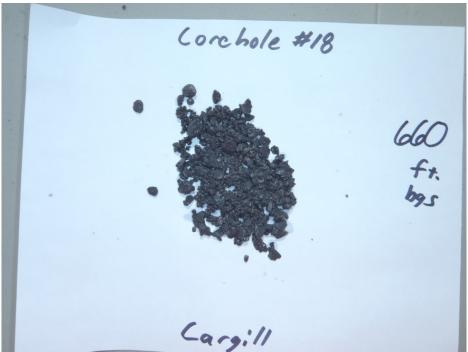
Figure A-28. Corehole #18: 552 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Spafford Member.

Figure A-29. Corehole #18: 572 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Ivy Point Member.

Figure A-30. Corehole #18: 592 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

Figure A-31. Corehole #18: 600 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

Core hole #18 620 fr. bys Cargill


Figure A-32. Corehole #18: 620 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

RSI-2099-13-054

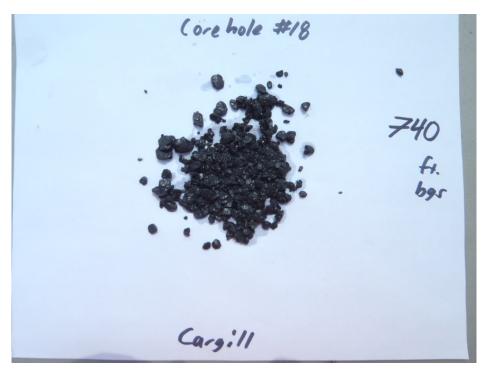
Figure A-33. Corehole #18: 640 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

RSI-2099-13-055

Figure A-34. Corehole #18: 660 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

Figure A-35. Corehole #18: 680 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

RSI-2099-13-057


Figure A-36. Corehole #18: 700 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

RSI-2099-13-058

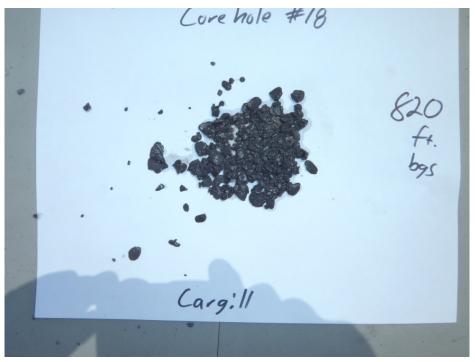
Figure A-37. Corehole #18: 720 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

RSI-2099-13-059

Figure A-38. Corehole #18: 740 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Otisco Member.

RSI-2099-13-060

Figure A-39. Corehole #18: 760 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Centerfield Member.


Figure A-40. Corehole #18: 780 Feet Below Ground Surface. Hamilton Group: Ludlowville Shale Formation–Centerfield Member.

RSI-2099-13-062

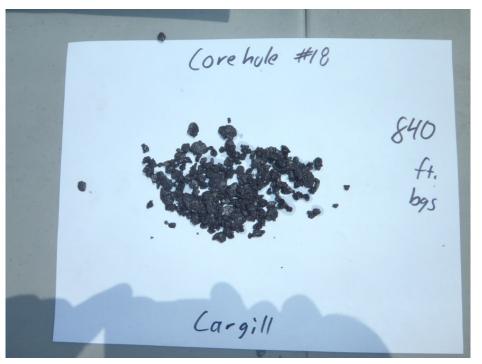


Figure A-41. Corehole #18: 800 Feet Below Ground Surface.

Hamilton Group: Skaneatleles Shale Formation–Butternut Shale Member.

Figure A-42. Corehole #18: 820 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Butternut Shale Member.

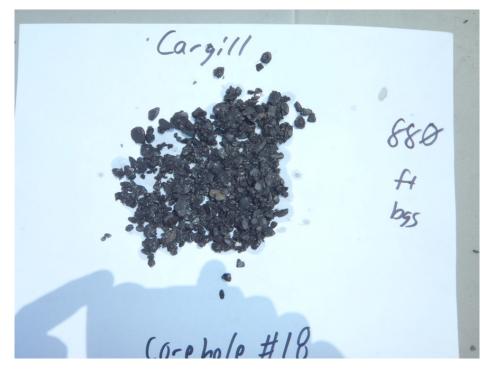


Figure A-43. Corehole #18: 840 Feet Below Ground Surface.

Hamilton Group: Skaneatleles Shale Formation-Butternut Shale Member.

Figure A-44. Corehole #18: 860 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Butternut Shale Member.

Figure A-45. Corehole #18: 880 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Butternut Shale Member.

RSI-2099-13-067

Figure A-46. Corehole #18: 900 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Butternut Shale Member.

Figure A-47. Corehole #18: 920 Feet Below Ground Surface.

Hamilton Group: Skaneatleles Shale Formation-Butternut Shale Member.

RSI-2099-13-069

Figure A-48. Corehole #18: 940 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Butternut Shale Member.

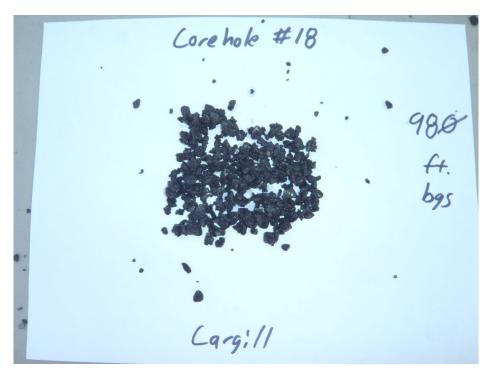
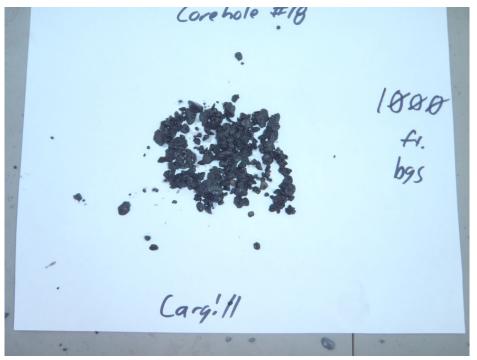

RSI-2099-13-070

Figure A-49. Corehole #18: 960 Feet Below Ground Surface.


Hamilton Group: Skaneatleles Shale Formation-Butternut Shale Member.

RSI-2099-13-071

Figure A-50. Corehole #18: 980 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Pompey Member.

RSI-2099-13-072

Figure A-51. Corehole #18: 1,000 Feet Below Ground Surface.

Hamilton Group: Skaneatleles Shale Formation–Pompey Member.

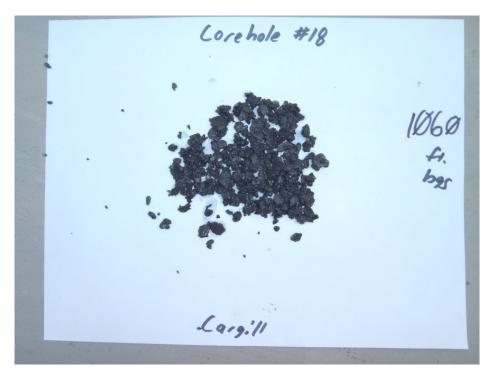
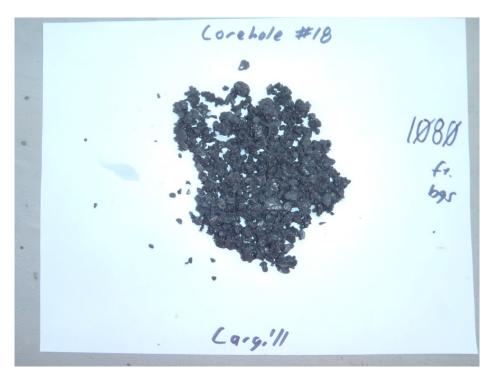

Lore holo #18 1820 ft bys

Figure A-52. Corehole #18: 1,020 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Pompey Member.


Figure A-53. Corehole #18: 1,040 Feet Below Ground Surface.

Hamilton Group: Skaneatleles Shale Formation-Pompey Member.

Figure A-54. Corehole #18: 1,060 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Pompey Member.

RSI-2099-13-076

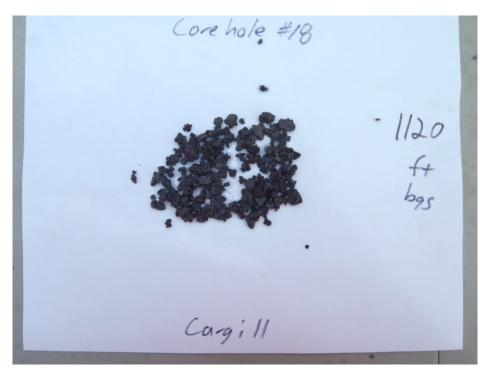


Figure A-55. Corehole #18: 1,080 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale- Pompey Member.

> Corebole #18 11000 4. bys Cargill

Figure A-56. Corehole #18: 1,100 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Pompey Member.

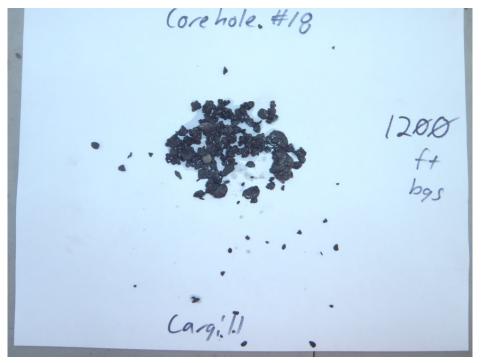
RSI-2099-13-078

Figure A-57. Corehole #18: 1,120 Feet Below Ground Surface.

Hamilton Group: Skaneatleles Shale Formation–Pompey Member.

Figure A-58. Corehole #18: 1,140 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Pompey Member.

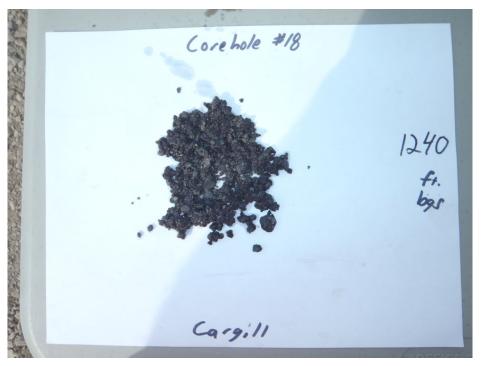
Figure A-59. Corehole #18: 1,160 Feet Below Ground Surface.


Hamilton Group: Skaneatleles Shale Formation-Pompey Member.

RSI-2099-13-081


Figure A-60. Corehole #18: 1,180 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Formation–Pompey Member.

RSI-2099-13-082


Figure A-61. Corehole #18: 1,200 Feet Below Ground Surface.

Hamilton Group: Skaneatleles Shale Member- Delphi Station Member.

Figure A-62. Corehole #18: 1,220 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Member- Delphi Station Member.

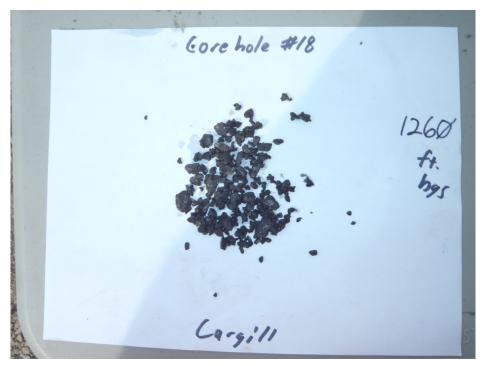

RSI-2099-13-084

Figure A-63. Corehole #18: 1,240 Feet Below Ground Surface.

Hamilton Group: Skaneatleles Shale Member- Delphi Station Member.

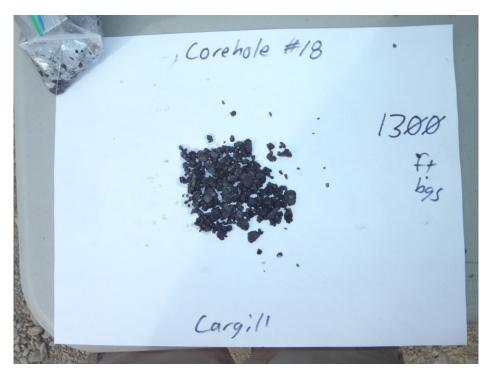

RSI-2099-13-085

Figure A-64. Corehole #18: 1,260 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Member- Delphi Station Member.

Figure A-65. Corehole #18: 1,280 Feet Below Ground Surface. Hamilton Group: Skaneatleles Shale Member- Delphi Station Member.

Figure A-66. Corehole #18: 1,300 Feet Below Ground Surface. Hamilton Group: Marcellus Shale Formation–Oatka Creek Member.

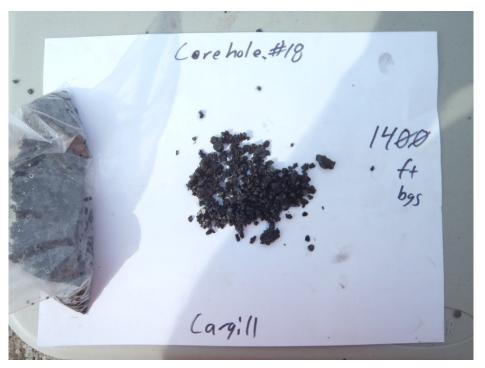
RSI-2099-13-088

Figure A-67. Corehole #18: 1,320 Feet Below Ground Surface.

Hamilton Group: Marcellus Shale Formation–Oatka Creek Member.

RSI-2099-13-089

Figure A-68. Corehole #18: 1,340 Feet Below Ground Surface. Hamilton Group: Marcellus Shale Formation–Oatka Creek Member.


Figure A-69. Corehole #18: 1,360 Feet Below Ground Surface.

Hamilton Group: Marcellus Shale Formation–Oatka Creek Member.

RSI-2099-13-091

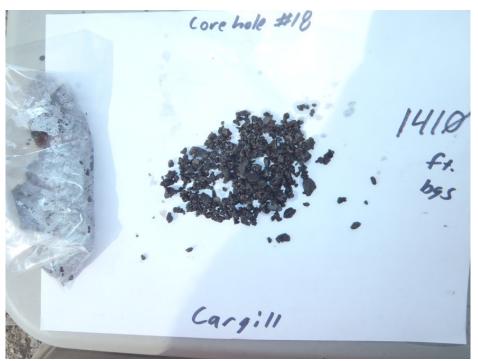
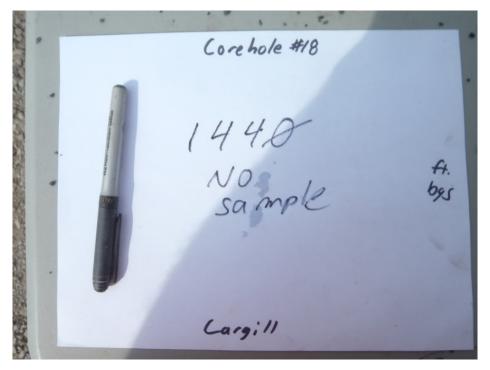

Figure A-70. Corehole #18: 1,380 Feet Below Ground Surface. Hamilton Group: Marcellus Shale Formation–Oatka Creek Member.

Figure A-71. Corehole #18: 1,400 Feet Below Ground Surface.

Hamilton Group: Marcellus Shale Formation-Oatka Creek Member.

RSI-2099-13-093

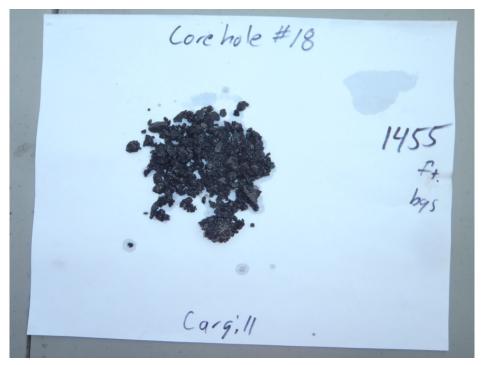
Figure A-72. Corehole #18: 1,410 Feet Below Ground Surface. Hamilton Group: Marcellus Shale Formation–Cherry Valley Member.


Figure A-73. Corehole #18: 1,420 Feet Below Ground Surface. Hamilton Group: Marcellus Shale Formation–Union Springs Member.

RSI-2099-13-095

Figure A-74. Corehole #18: 1,430 Feet Below Ground Surface. Hamilton Group: Marcellus Shale Formation–Union Springs Member.

RSI-2099-13-096


Figure A-75. Corehole #18: 1,440 Feet Below Ground Surface. Suspected Onondaga Limestone Formation–Seneca Member.

RSI-2099-13-097

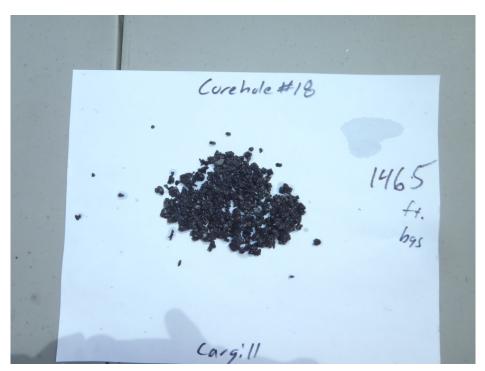


Figure A-76. Corehole #18: 1,450 Feet Below Ground Surface. Onondaga Limestone Formation–Seneca Member.

RSI-2099-13-098

Figure A-77. Corehole #18: 1,455 Feet Below Ground Surface. Onondaga Limestone Formation–Undifferentiated.

Figure A-78. Corehole #18: 1,465 Feet Below Ground Surface. Onondaga Limestone Formation–Undifferentiated.

RSI-2099-13-100

Figure A-79. Corehole #18: 1,475 Feet Below Ground Surface. Onondaga Limestone Formation–Undifferentiated.

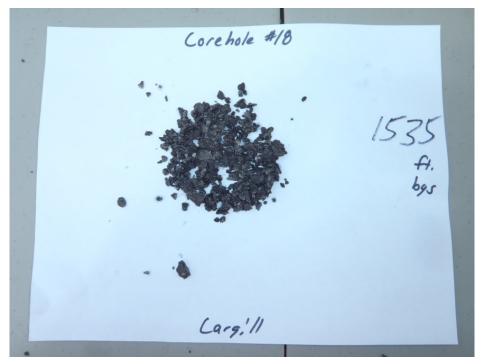
Figure A-80. Corehole #18: 1,485 Feet Below Ground Surface. Tristates Group: Carlisle Center Formation.

Figure A-81. Corehole #18: 1,495 Feet Below Ground Surface. Tristates Group: Carlise Center-Oriskany Sandstone Formations.

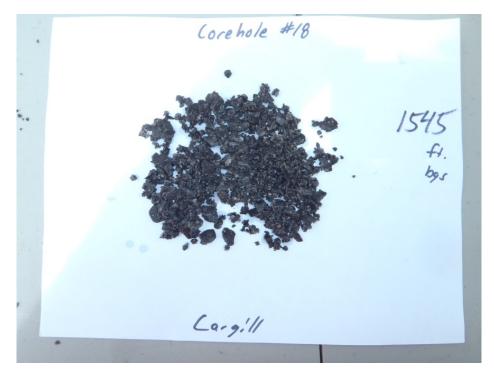
RSI-2099-13-103

Figure A-82. Corehole #18: 1,505 Feet Below Ground Surface. Tristates Group: Carlisle Center-Oriskany Formations.

RSI-2099-13-104


Figure A-83. Corehole #18: 1,515 Feet Below Ground Surface. Helderberg Group: Coeymans Formation–Deansboro Member.

RSI-2099-13-105


Figure A-84. Corehole #18: 1,525 Feet Below Ground Surface. Helderberg Group: Coeymans Formation–Deansboro Member.

RSI-2099-13-106

Figure A-85. Corehole #18: 1,535 Feet Below Ground Surface. Helderberg Group: Coeymans Formation–Deansboro Member.

RSI-2099-13-107

Figure A-86. Corehole #18: 1,545 Feet Below Ground Surface. Helderberg Group: Coeymans Formation–Deansboro Member.

RSI-2099-13-108

Figure A-87. Corehole #18: 1,555 Feet Below Ground Surface. Helderberg Group: Coeymans Formation–Deansboro Member.

APPENDIX B

BEDROCK CORE SAMPLE PHOTOGRAPHS

Figure B-1. 1,555–1,566 Feet Below Ground Surface. Helderberg Group: Coeymans Formation–Deansboro Member.

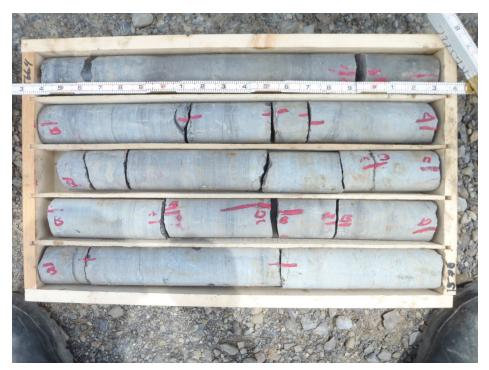


Figure B-2.1,566–1,576 Feet Below Ground Surface.
Helderberg Group: Coeymans Formation–Deansboro Member.

Figure B-3. 1,576–1,585.4 Feet Below Ground Surface. Helderberg Group: Coeymans Formation–Manlius Formation Contact.

Figure B-4.1585.4–1,594.5 Feet Below Ground Surface.
Helderberg Group: Manlius Formation–Jamesville Member.

RSI-2099-13-113

Figure B-5. 1,594.5–1,604 Feet Below Ground Surface. Helderberg Group: Manlius Formation–Jamesville Member.

Figure B-6.1,604–1,613 Feet Below Ground Surface.
Helderberg Group: Manlius Formation–Clark Reservation Member.

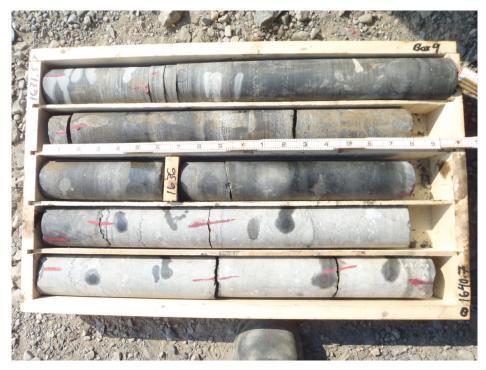


Figure B-7. 1,613–1,622 Feet Below Ground Surface. Helderberg Group: Manlius Formation–Elmwood Member.

Figure B-8.1,622–1,631.5 Feet Below Ground Surface.Helderberg Group: Manlius Formation–Elmwood Member.

RSI-2099-13-117

Figure B-9. 1,631.5–1,640.7 Feet Below Ground Surface. Helderberg Group: Manlius Formation–Elmwood and Olney Members.

Figure B-10. Core Before Breaking to Fit in the Core Box. Helderberg Group: Manlius Formation–Olney Member.

RSI-2099-13-119

Figure B-11. 1,640.7–1,649.3 Feet Below Ground Surface. Helderberg Group: Manlius Formation–Olney Member.

RSI-2099-13-120

Figure B-12. Core Before Breaking to Fit in Core Box. Helderberg Group: Manlius Formation–Thatcher Member.

Figure B-13. 1,649.3–1,658.5 Feet Below Ground Surface. Helderberg Group: Manlius Formation–Olney Member.

Figure B-14. 1,658.5–1,667.8 Feet Below Ground Surface. Helderberg Group: Manilus Formation–Rondout Formation–Contact.

RSI-2099-13-122

RSI-2099-13-123

Figure B-15. 1,667.8–1,676.6 Feet Below Ground Surface. Helderberg Group: Rondout Formation–Cobleskill Formation Contact.

Figure B-16. 1,676.6–1,685.8 Feet Below Ground Surface. Helderberg Group: Cobleskill Formation–"Akron Facies."

RSI-2099-13-124

RSI -2099-13-125

Figure B-17. 1,685.8–1,694.7 Feet Below Ground Surface. Helderberg Group: Cobleskill Formation–Bertie Formation Contact.

RSI-2099-13-126

Figure B-18. Core Before Breaking to Fit in Core Box. Helderberg Group: Bertie Formation–Forge Hollow Member.

Figure B-19. Runs 14 and 15: 1,694.7–1,705.8 Feet Below Ground Surface. Helderberg Group: Bertie Formation–Forge Hollow Member.

Figure B-20. Run 16: 1,705.8–1,716 Feet Below Ground Surface. Helderberg Group: Bertie Formation–Forge Hollow Member.

Figure B-21. Run 17: 1,716–1,726 Feet Below Ground Surface. Helderberg Group: Bertie Formation–Forge Hollow Member.

Figure B-22. Run 18: 1,726–1,736 Feet Below Ground Surface. Helderberg Group: Bertie Formation–Forge Hollow Member.

Figure B-23. Run 19: 1,736–1,746 Feet Below Ground Surface. Helderberg Group: Bertie Formation–Forge Hollow Member.

Figure B-24. Run 20: 1,746–1,756 Feet Below Ground Surface. Bertie Formation Helderberg Group: Bertie Formation–Forge Hollow Member.

Figure B-25. Run 21: 1,756–1,766 Feet Below Ground Surface. Helderberg Group: Bertie Formation–Fiddlers Green Member.

Figure B-26. Run 22: 1,766–1,776 Feet Below Ground Surface. Helderberg Group: Bertie Formation–Fiddlers Green Member.

Figure B-27. Run 23: 1,776–1,786 Feet Below Ground Surface. Salina Group-Salina G/Camillus Formation.

B-15

Figure B-28. Run 24: 1,786–1,796 Feet Below Ground Surface. Salina Group-Salina G/Camillus Formation.

Figure B-29. Run 25: 1,796–1,806 Feet Below Ground Surface. Salina Group- Salina G/Camillus Formation.

Figure B-30. Run 26: 1,806–1,816 Feet Below Ground Surface. Salina Group-Salina G/Camillus Formation.

Figure B-31. Run 27: 1,816–1,826 Feet Below Ground Surface. Salina Group-Salina G/Camillus Formation.

Figure B-32. Run 28: 1,826–1,836 Feet Below Ground Surface. Salina Group-Salina G/Camillus Formation.

Figure B-33. Run 29: 1,836–1,846 Feet Below Ground Surface. Salina Group-Salina G/Camillus Formation.

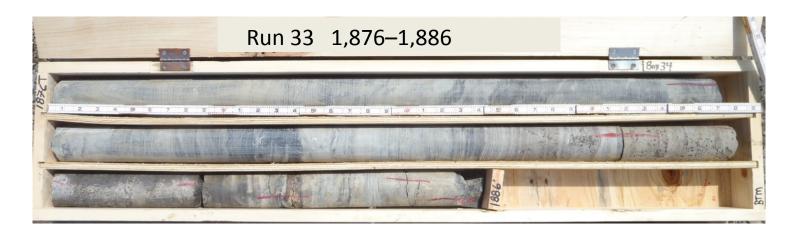

Figure B-34. Run 30: 1,846–1,856 Feet Below Ground Surface. Salina Group- Salina G/Camillus Formation

Figure B-35. Run 31: 1,856–1,866 Feet Below Ground Surface. Salina Group- Salina G/Camillus Formation.

Figure B-36. Run 32: 1,866–1,876 Feet Below Ground Surface. Salina Group- Salina G/Camillus Formation.

Figure B-37. Run 33: 1,876–1,886 Feet Below Ground Surface. Salina Group: Salina G/ Camillus and Syracuse Formation–Salina F Contact.

Figure B-38. Orange Salt Infilling at 1,884.9.

Figure B-39. Run 34: 1,886–1,896 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F4/ #1 Salt.

Figure B-40. 1,896 Feet Below Ground Surface. Close-up of Salina F4- #1 Salt.

Figure B-41. Run 35: 1,896–1,906 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F4.

Figure B-42. Run 36: 1,906–1,916 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3/ #2 Salt.

Figure B-43. Run 37: 1,916–1,926 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3-/#2 Salt.

Figure B-44. Run 38: 1,926–1,936 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3-/#2 Salt.

Figure B-45. Run 39: 1,936–1,946 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3-/#2 Salt.

Figure B-46. Run 40: 1,946–1,956 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3-/#2 Salt.

RSI-2099-13-155

Figure B-47. Close-Up View at 1,951 Feet Below Ground Surface.

Figure B-48. Run 41: 1,956–1,966 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3/ #2 Salt.

Figure B-49. Run 42: 1,966–1,976 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3/ #2 Salt.

Figure B-50. Run 43: 1,976–1,986 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3/ #2 Salt.

Figure B-51. Transition Zone at 1,985.6 Feet Below Ground Surface.

Figure B-52. Run 44: 1,986–1,996 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3.

Figure B-53. Run 45: 1,996–2,006 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3.

Figure B-54. Run 46: 2,006–2,016 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3.

Figure B-55. Salt Infilling at 2,009.7 Feet Below Ground Surface.

Figure B-56. Run 47: 2,016–2,026 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F3-Salina F2/#3 Salt Contact.

Figure B-57. Dolostone "Pebble" at 2,025.8 Feet Below Ground Surface.

Figure B-58. Large Salt Crystals at 2,016.7 Feet Below Ground Surface.

Figure B-59. Run 48: 2,026–2,036 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F2/#3Salt.

Figure B-60. Run 49: 2,036–2,046 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F2/#3Salt.

Figure B-61. Run 50: 2,046–2,056 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F2/#3Salt.

Figure B-62. Run 51: 2,056–2,066 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F2/#3Salt.

Figure B-63. Run 52: 2,066–2,076 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F

Figure B-64. Run 53: 2,076–2,086 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F.

Figure B-65. Run 54: 2,086–2,096 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F.

B-34



Figure B-66. Run 55: 2,096–2,106 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F.

RSI-2099-13-175

RSI-2099-13-176

Figure B-67. Run 56: 2,106–2,116 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F.

Figure B-68. Run 57: 2,116–2,126 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/#4 Salt.

Figure B-69. Run 58: 2,126–2,136 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/#4 Salt.

Figure B-70. Run 59: 2,136–2,146 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/#4 Salt.

Figure B-71. Run 60: 2,146–2,156 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/#4 Salt and laminated Shale.

Run 61 2156	5°-2166
and the second state of the second se	

Figure B-72. Run 61: 2,156–2,166 Feet Below Ground Surface. Salina Group: Syracuse Formation–Laminated Shale and Salina F1/4A Salt.

Figure B-73. Run 62: 2,166–2,176 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/4A Salt.

Figure B-74. Run 63: 2,176–2,186 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/4A Salt.

Figure B-75. Run 64: 2,186–2,196 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/4A Salt.

Figure B-76. Run 65: 2,196–2,206 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/4A Salt.

Figure B-77. Run 66: 2,206–2,216 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina F1/4A Salt and Salina E Member Contact.

Figure B-78. Run 67: 2,216–2,226 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina E Member.

RSI-2099-13-187

Figure B-79. Orange Salt Seam at 2,223.6 Feet Below Ground Surface.

Figure B-80. Run 68: 2,226–2,236 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina E Member.

Figure B-81. Run 69: 2,236–2,246 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina E Member.

Figure B-82. Run 70: 2,246–2,256 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina E Member.

Figure B-83. Run 71: 2,256–2,266 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina E Member.

Figure B-84. Run 72: 2,266–2,276 Feet Below Ground Surface. Salina Group: Syracuse Formation– Salina E Member.

Figure B-85. Run 73: 2,276–2,286 Feet Below Ground Surface. Salina Group: Syracuse Formation– Salina E Member.

Figure B-86. Run 74: 2,286–2,296 Feet Below Ground Surface. Salina Group: Syracuse Formation– Salina E Member.

Figure B-87. Run 75: 2,296–2,306 Feet Below Ground Surface. Salina Group: Syracuse Formation– Salina E Member.

Figure B-88. Run 76: 2,306–2,316 Feet Below Ground Surface. Salina Group: Syracuse Formation– Salina E Member.

Figure B-89. Run 77: 2,316–2,326 Feet Below Ground Surface. Salina Group: Syracuse Formation– Salina E Member.

Figure B-90. Run 78: 2,326–2,336 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina E Member and Salina D Contact at Salina D3/ #5 Salt.

Figure B-91. Run 79: 2,336–2,346 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D3/#5 Salt.

Figure B-92. Run 80: 2,346–2,356 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D3/#5 Salt and Claystone.

Figure B-93. Run 81: 2,356–2,366 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D Claystone and #5A Salt.

Figure B-94. Run 82: 2,366–2,376 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D Claystone.

Figure B-95. Run 83: 2,376–2,386 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D Claystone and Salina D2/#6 Salt.

Figure B-96. Run 84: 2,386–2,396 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D2/#6 Salt.

Figure B-97. Run 85: 2,396–2,406 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D2/#6 Salt and Dolomite.

Figure B-98. Run 86: 2,406–2,416 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D Dolomite and Salina D1/# 7 Salt.

Figure B-99. Run 87: 2,416–2,426 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina D1/# 7 Salt and Salina C/Vernon Shale Contact.

Figure B-100. Bottom of Salina D1/#7 Salt Salina C/Vernon Formation Transition Zone.

Figure B-101. Run 88: 2,426–2,436 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina C/Vernon Shale.

Figure B-102. Run 89: 2,436–2,446 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina C/ Vernon Shale

Figure B-103. Run 90: 2,446–2,456 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina C/Vernon Shale.

Figure B-104. Run 91: 2,456–2,466 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina C/Vernon Shale.

Figure B-105. Run 92: 2,466–2,476 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina C/Vernon Shale.

Figure B-106. Run 93: 2,476–2,486 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina C Vernon Shale.

RSI-2099-13-215

Figure B-107. Brine Bubbles Under the Salt Sheet in the Vertical Fracture at 2,484 Feet Below Ground Surface. Salina Group: Syracuse Formation–Salina C/Vernon Shale.

APPENDIX C

WEATHERFORD WIRELINE LOGS

1				
A -		Phote	Photo Density	
Weatherford	JLU [®]	Gam	Gamma Ray	
COMPANY Car	Cargill Inc.			
	Cargill 18			
		-		
COUNTRY/STATE II S	I ompkins County	ounty		
			FIELD PRINT	Z
SEC TWP RGE		Other Services Arrav Induction	Data Pack	
API Number	0	Compensated Sonic	Caliper	
Permit Number 31-109-26509-00		Vectar		
Permanent Datum Ground Level, Elevation 887 feet	_evel, Eleva	tion 887 feet	vations:	feet
Log Measured From GL Drilling Measured From GLL	1			887.00 887.00
Date	15-May-2013	13		
Run Number	One			
Service Order	3531401			
Depth Driller	590.00	feet		
Depth Logger	587.00	feet		
First Reading	587.00	feet		
Last Reading	0.00	feet		
Casing Driller	28.00	feet		
Casing Logger	28.00	feet		
Bit Size	8.875	inches		
Hole Fluid Type	Water Based	đ		
Density / Viscosity	8.50 lb/	lb/USg 27.00 sec/qt		
PH / Fluid Loss				
Dm @ Measured Temp		~ D		
Rmf @ Measured Temp	7.133 @ 68.0			
Rmc @ Measured Temp	14.265@ 68.0			
Source Rmf / Rmc	Calc.	Calc.		
Rm @ BHT	9.51 @ 68	68.0 ohm-m		
Time Since Circulation	4 Hrs			
Max Recorded Temp				
Equipment / Base	13041	Muncy		
Recorded By	Nibras Nureldin	reldin		
Witnessed By	Patrick mcgrath	grath		

	BOREHOLE RECORD Last Edited: 15-MAY-2013 13:47										
	Bit Size	Depth From		Depth To							
	inches	feet		feet							
	8.750	28.50		587.00							
CASING RECORD											
Туре	Size	Depth From	Shoe De	epth Weight							
	inches	feet		pounds/ft							
	10.750	0.00	28	.50 42.00							

Software: WLS 13.05.9583

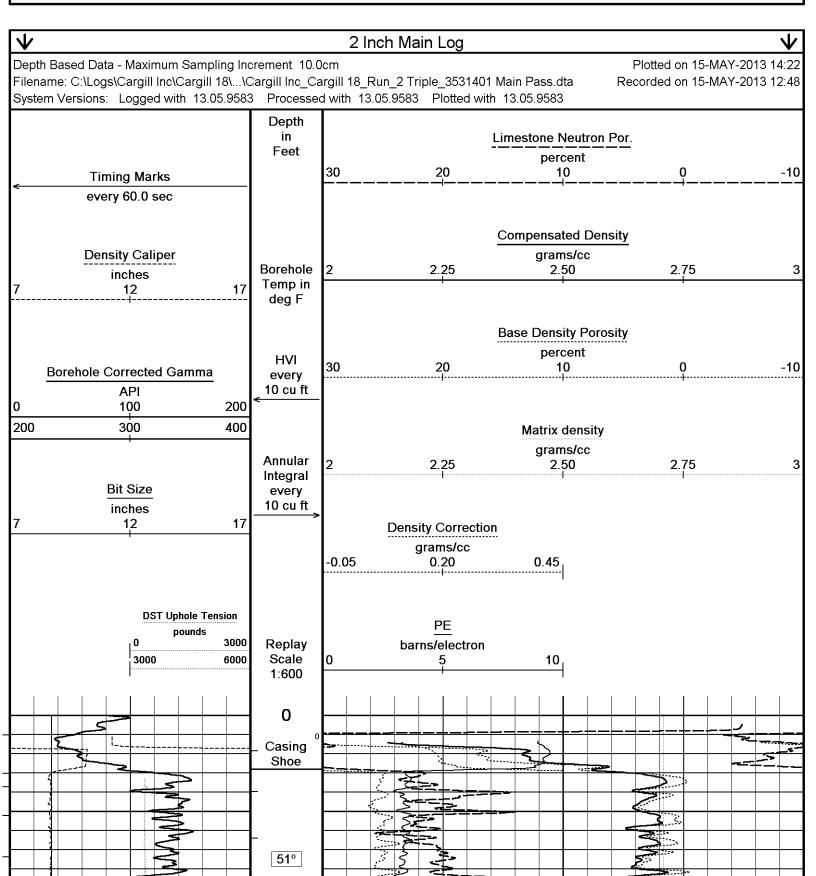
Tools Run 2: SHA, MCG, MDN, MPD, MFE,,MAI

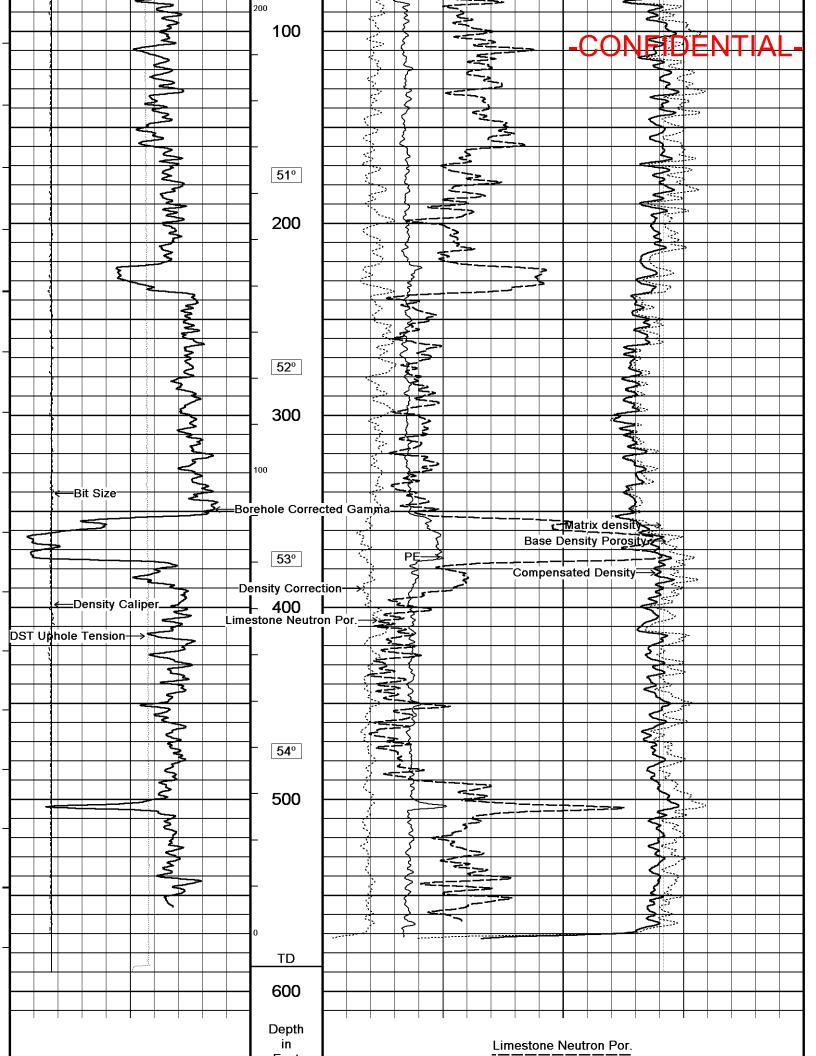
Hardware: MDN - Dual Eccentraliser MAI - Two-1 Inch Standoffs

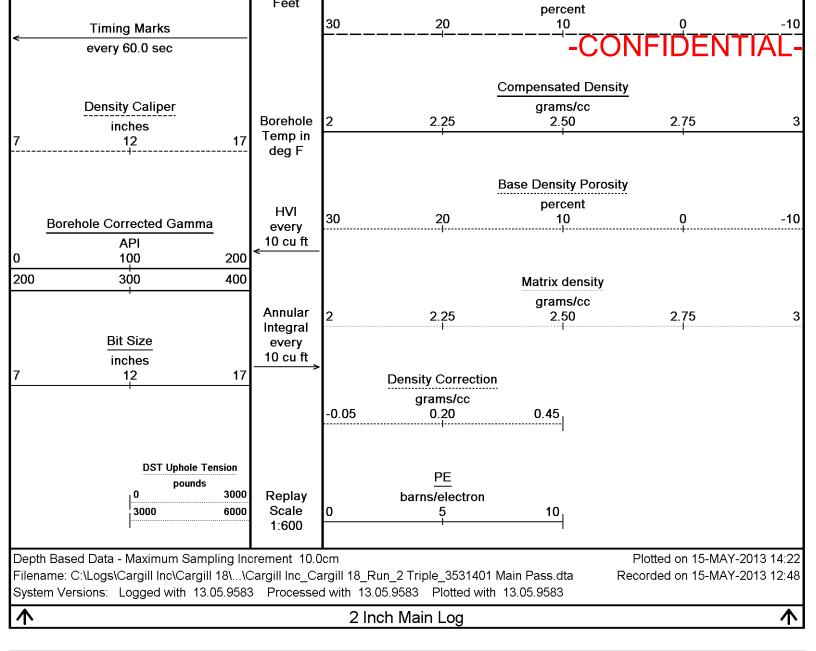
MPD - Two Roll over subs

Density Matrix was ran on 2.71 gg/cc

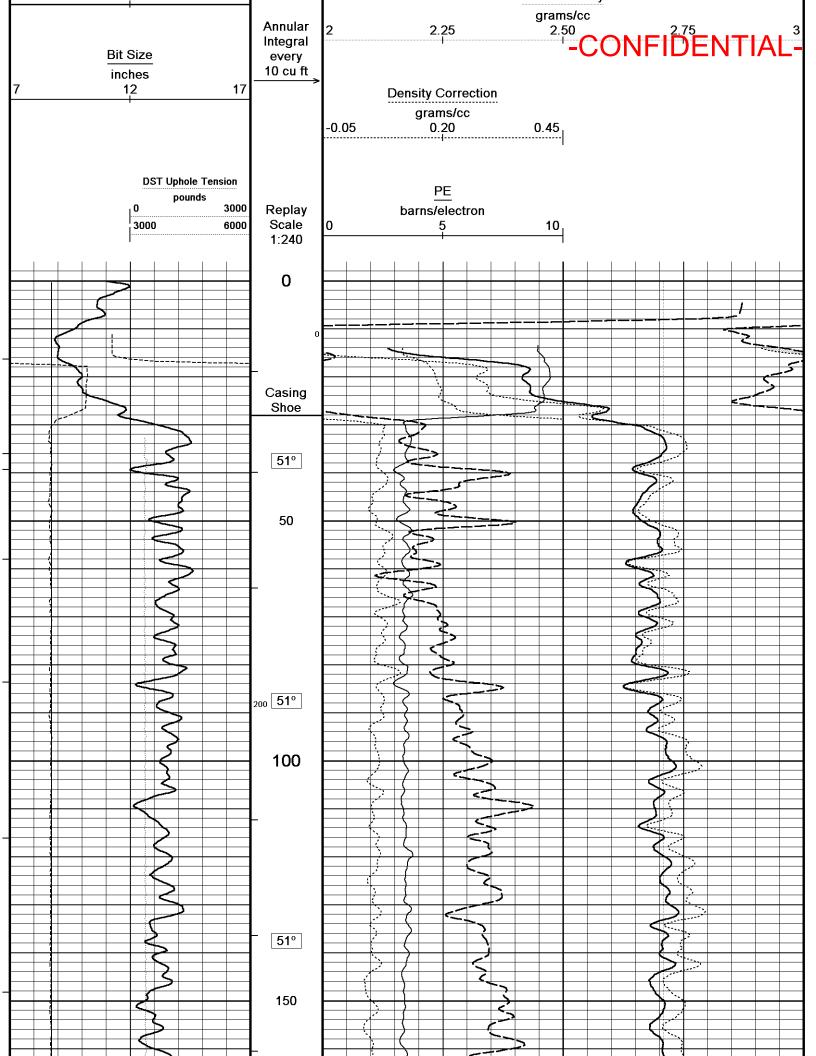
Crew: Nibras Nureldin Bruce Clark

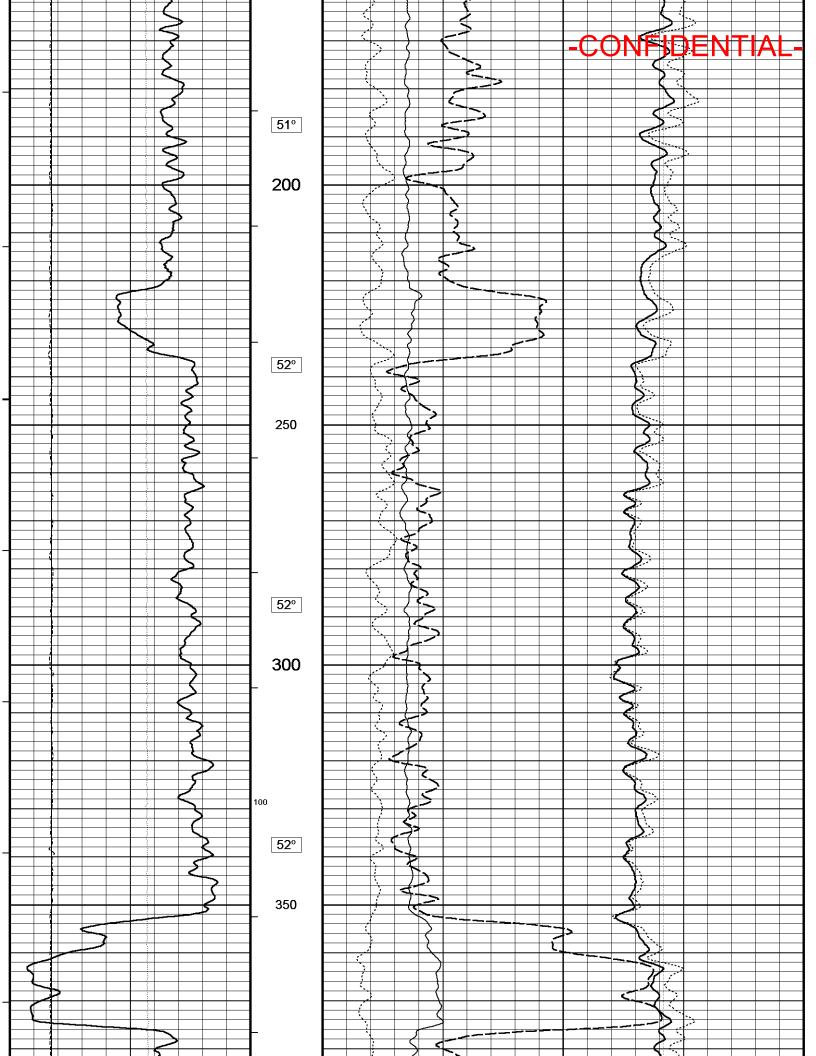

Gamma ray spikes up at the bottom of the borehole because the gamma ray sub ran below the sources 7 inch casing was used to calculate annular hole volumes Gamma ray was recorded to ground level

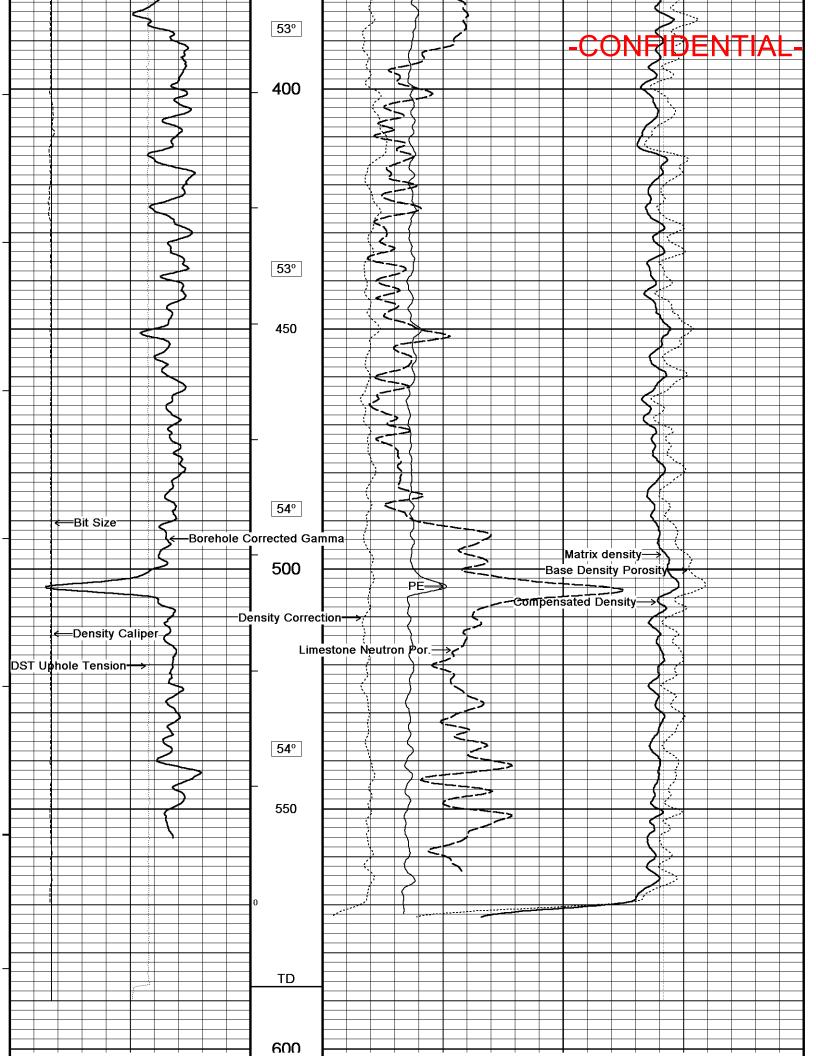

Carrina ray mac recorded to ground lever

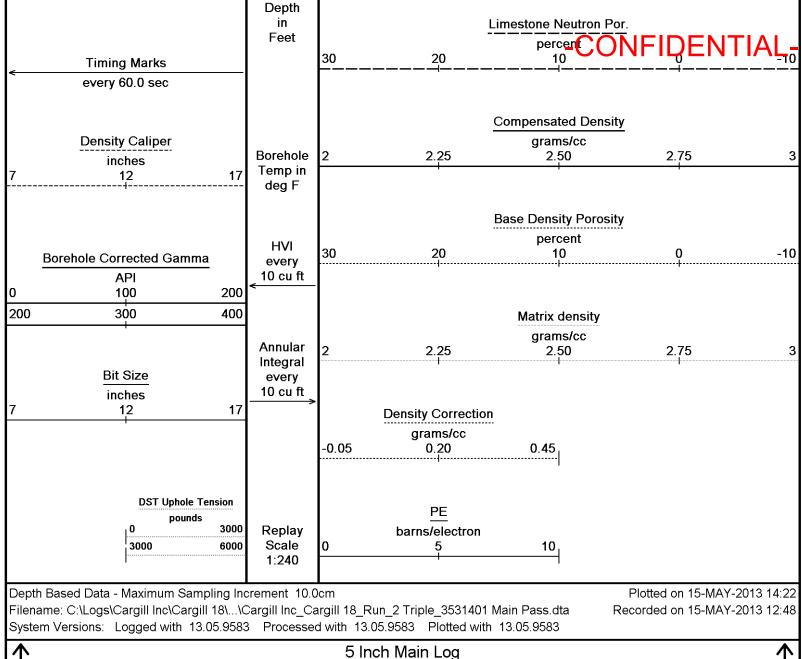

Mud Density is 8.5 lbs/USg

-CONFIDENTIAL-

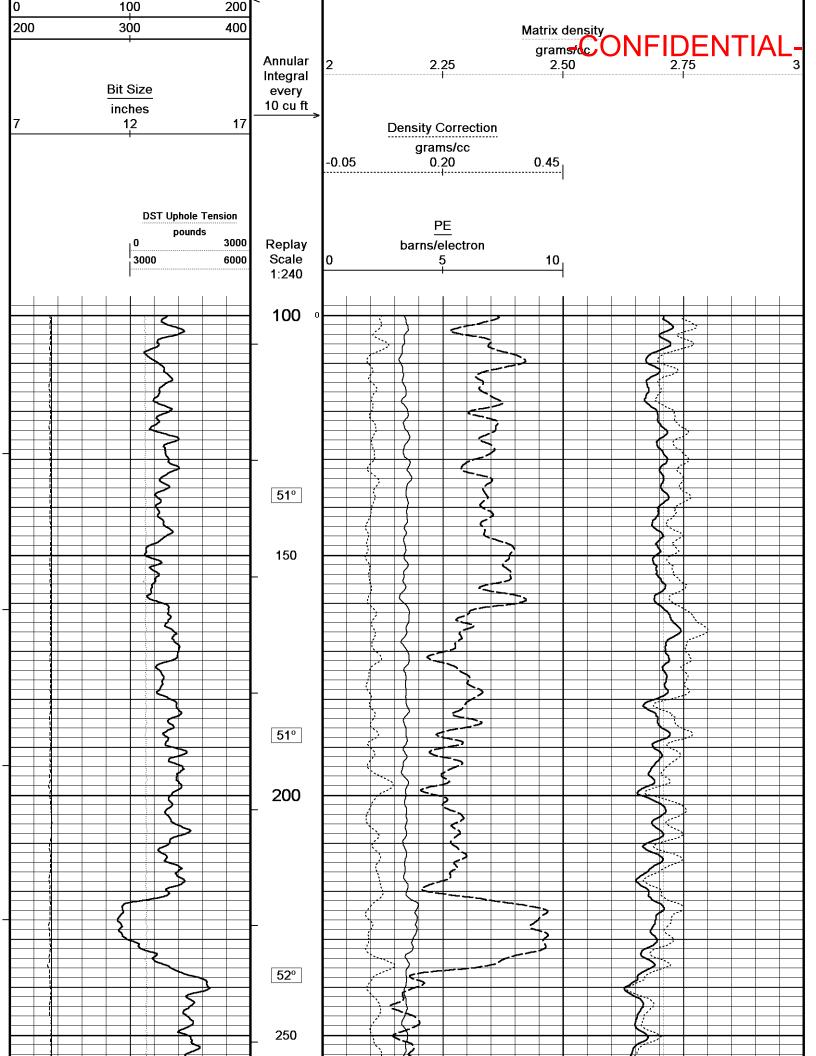

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not, guarantee the accuracy or correctness of any interpretations, and we shall not, except in the case of gross or wilful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions in our price schedule.

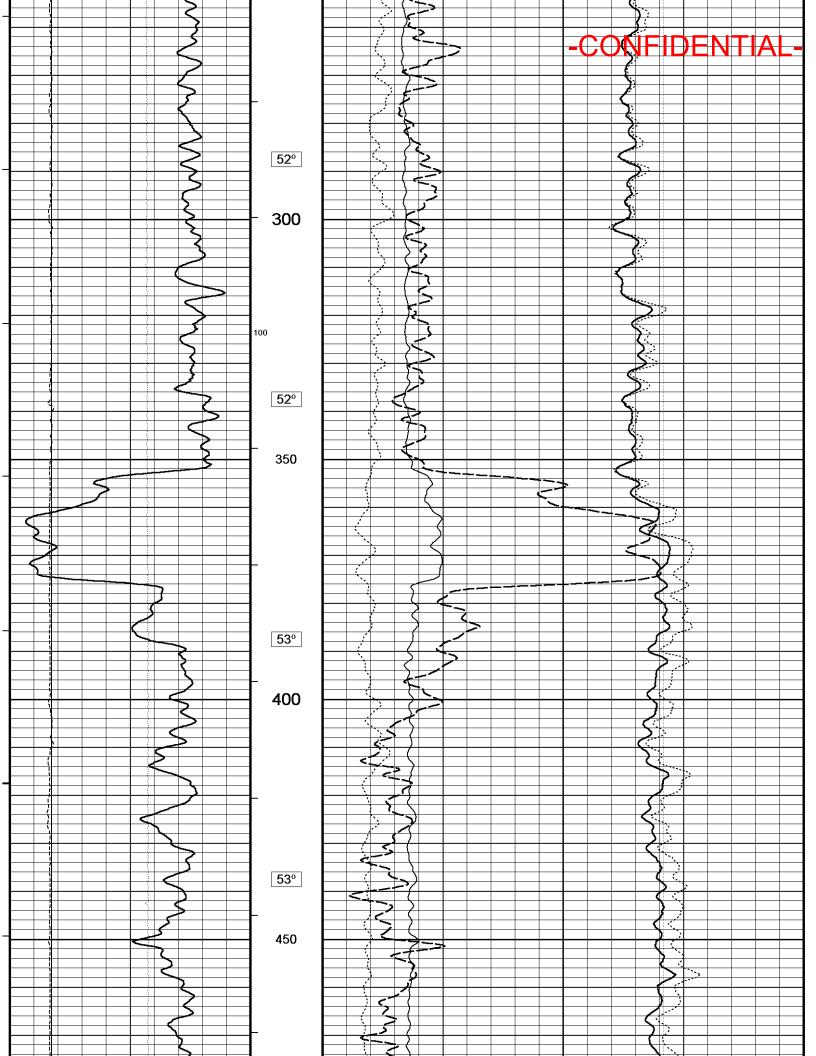


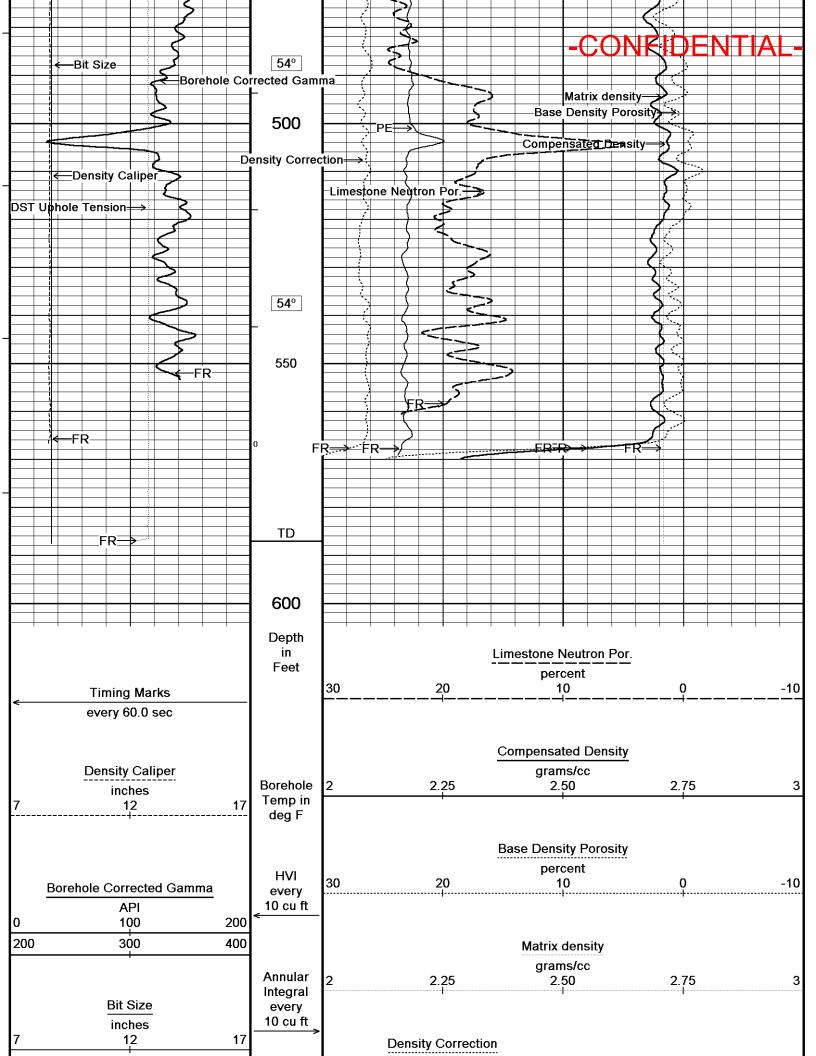


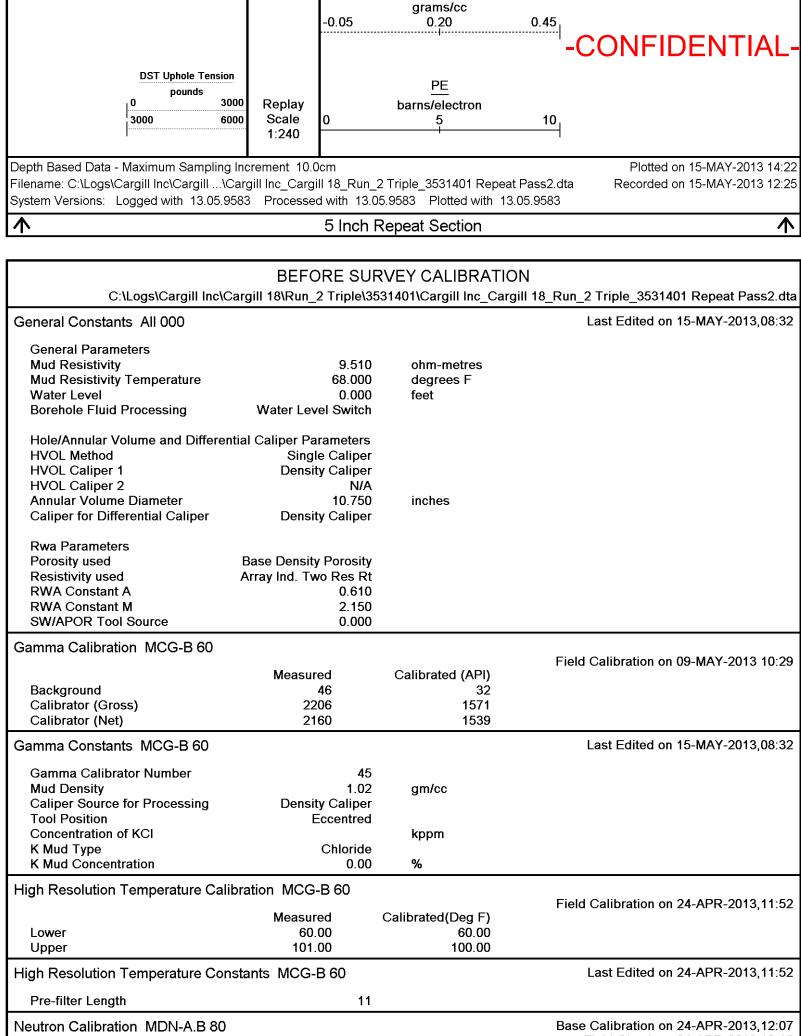


\mathbf{V}				5 In	ch Main Log			\mathbf{V}
Dept	h Based Data - Maximum Sampli	ing Inc	rement 10.0)cm			Plotted on 15-MAY	′-2013 14:22
	ame: C:\Logs\Cargill Inc\Cargill 1 em Versions: Logged with 13.05						Recorded on 15-MAY	′-2013 12:48
*	Timing Marks		Depth in Feet	30	20	Limestone Neutron percent 10	<u>Por.</u> 0	10
	every 60.0 sec					Compensated Der	seity	
	Density Caliper					grams/cc	isity	
7	inches 12		Borehole Temp in deg F	2	2.25	2.50	2.75	3
			HVI	20	20	Base Density Porc	osity	10
0	Borehole Corrected Gamma API 100	200	every 10 cu ft <	30	20	10	Ŷ	-10
200	300	400				Matrix densitv		








5 Inch Main Log

\checkmark		5 Incl	h Repeat Sectior	n		\checkmark
Depth Based Data - Maximum Sampling In	crement 10.(Jcm			Plotted on 15-MAY-	2013 14:22
Filename: C:\Logs\Cargill Inc\Cargill\Ca	rgill Inc_Carg	ill 18_Ru	un_2 Triple_3531401	Repeat Pass2.dta	Recorded on 15-MAY-	2013 12:25
System Versions: Logged with 13.05.958	3 Processe	d with 1	3.05.9583 Plotted v	vith 13.05.9583		
	Depth					
	in			Limestone Neutron	Por.	
	Feet			percent		
Timing Marks		30	20	10	Q	-10
every 60.0 sec		F				
				Compensated Den	isity	
Density Caliper				grams/cc	<u> </u>	
inches	Borehole	2	2.25	2.50	2.75	3
7 12 17	Tempin					
<u> </u>	- deg F					
				Base Density Poro	seity	
					Sity	
	HVI	30	20	percent 10	Ο	-10
Borehole Corrected Gamma	every				÷	- 10
API	_ 10 cu ft					

Base Calibration

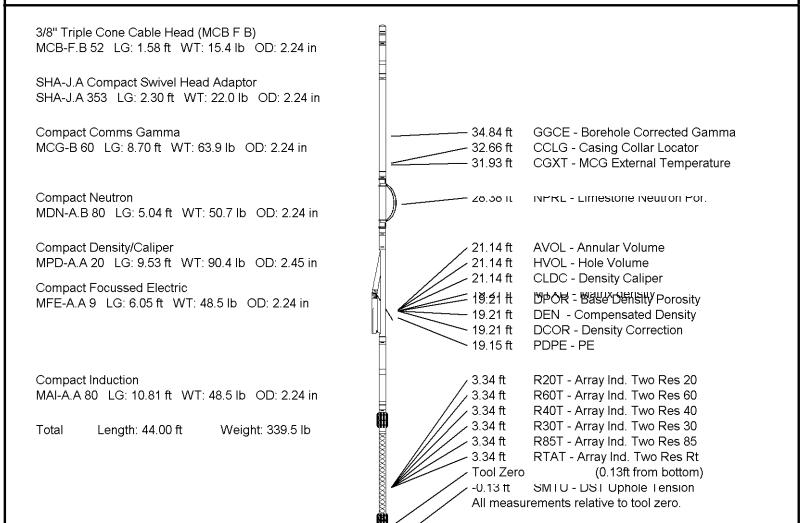
Field Check on 24-APR-2013 12:15

Dusc oundration	Measured Near Far	Calibrated (cps) Near Far	
Ratio	3504 108 32.559	3714 110 33.764	-CONFIDENTIAL-
Field Calibrator at Base		Calibrated (cps) 1457 2097	
Ratio		0.695	
Field Check		Calibrated (cps) 1206 1797	
Ratio		0.671	
Neutron Constants MDN-A.B 80			Last Edited on 15-MAY-2013,08:32
Neutron Source Id Neutron Jig Number Epithermal Neutron Caliper Source for Processing Stand-off Mud Density Limestone Sigma Sandstone Sigma Dolomite Sigma Formation Pressure Source Formation Pressure Temperature Source Temperature Mud Salinity	P0197NN 50656N No Density Caliper 0.00 1.02 7.10 4.26 4.70 Constant Value 0.00 Constant Value 68.00 0.00	inches gm/cc cu cu cu cu kpsi degrees F	
Salinity Correction	Not Applied		
Formation Fluid Salinity Source Formation Fluid Salinity	Constant Value 0.00		
Barite Mud Correction	Not Applied		
Caliper Calibration MPD-A.A 20			Base Calibration on 14-MAY-2013 15:42 Field Calibration on 14-MAY-2013 15:47
Base Calibration Reading No 1 2 3 4 5 6	Measured 25425 35728 45344 55749 0 N/A	Calibrator Size (in) 6.03 7.99 9.85 11.82 0.00 N/A	
Field Calibration Mea	asured Caliper (in) 7.95	Actual Caliper (in) 7.99	
Photo Density Calibration MPD-A			Base Calibration on 14-MAY-2013 15:29
Density Calibration Base Calibration Reference 1	Measured Near Far 42764 15583	Calibrated (sdu) Near Far 53453 19407 25381 2580	Field Check on
Field Check at Base	1286.4 1488.0		
Field Check			
PE Calibration Base Calibration WS Background 232 Reference 1 14360 Deference 2 5519	Measured WH Ratio 1140 42576 0.341	Calibrated Ratio 0.320	
Reference 2 5518 Field Check at Base	20178 0.278	0.274	

Field Check at Base

Field Check

Density Constants MPD-A.A 20


-CONFIDENTIAL

Last Edited on 15-MAY-2013,08:31

Density Source Id	21145B		
Nylon Calibrator Number	DNC-D-520		
Aluminium Calibrator Number	DAC-D-520		
Density Shoe Profile	8 inch		
Caliper Source for Processing	Density Caliper		
PE Correction to Density	Not Applied		
Mud Density	1.02	gm/cc	
Mud Density Z/A Multiplier	1.11		
Mud Filtrate Density	1.00	gm/cc	
Dry Hole Mud Filtrate Density	0.70	gm/cc	
DNCT	0.00	gm/cc	
CRCT	0.00	gm/cc	
Density Z/A Correction	Hybrid		
Matrix Density (gm/cc)	Depth (ft)		
2.71	0.00		
0.00	0.00		
0.00	0.00		
0.00	0.00		
0.00	0.00		
0.00	0.00		
0.00	0.00		
0.00			

DOWNHOLE EQUIPMENT

C:\Logs\Cargill Inc\Cargill 18\Run_2 Triple\3531401\Cargill Inc_Cargill 18_Run_2 Triple_3531401 Repeat Pass2.dta

COMPANY		Cargill Inc.		-CONFIDENTIAL			
WELL		Cargill 18					
FIELD		Lansing					
PROVINCE/COUN	ITY	Tompkins County	0				
COUNTRY/STATE		U.S.A. / New York					
Elevation Kelly Bushing	883.00	feet	First Reading	587.00 feet			
Elevation Drill Floor	887.00	feet	Depth Driller	590.00 feet			
Elevation Ground Level	887.00	feet	Depth Logger	587.00 feet			
*		Photo Density					
	_	Compensated N	leutron				
Weatherf	ord	Gamma Ray					
	UIU	Canina Ray					

A		Array	Array Induction	
Weatherford	B	Gar	Gamma Ray	
	Cargill Inc.			
	Cargill 18			
PROVESSION INTY Tomatin	sing	'en ptv		
COUNTRYISTATE U.S.A. / New York	U.S.A. / New York	w York		
LOCATION			FIELD PI	PRINT
SEC TWP RGE		Other Services Photo Density	Data Pack	
API Number		Compensated Neutron	Caliper	
Permit Number 31-109-26509-00		Compensated Sonic	Vectar	
Permanent Datum Ground Level, Elevation 887 feet	evel, Eleva	ation 887 feet	Elevations:	feet
Log Measured From GL Drilling Measured From GLL	-		2 <u>7</u> 2	887.00
Date	15-May-2013	013	-	
Run Number	One			
Service Order	3531401			
Depth Driller	590.00	feet		
Depth Logger	587.00	feet		
	547.00	feet		
	0.00	feet		
	28.00	feet		
Logger	28.00	feet		
	8.875	inches		
Hole Fluid Type	Water Based	sed		
Density / Viscosity	8.50 lb	lb/USg 27.00 sec/qt		
PH / Fluid Loss				
Dm @ Measured Temp				
Rmf @ Measured Temp	7.133 @ 68.0	38.0 ohm-m		
Rmc @ Measured Temp	14.265@ 68.0			
Source Rmf / Rmc	Calc.	Calc.		
Rm @ BHT	9.51 @ 6	68.0 ohm-m		
Time Since Circulation	4 Hrs			
Max Recorded Temp				
Equipment / Base	13041	Muncy		
Recorded By	Nibras Nureldin	ureldin		
Witnessed By	Patrick mcgrath	cgrath		

	BOREHOLE RECORD Last Edited: 15-MAY-2013 13:4										
	Bit Size	Depth From		Depth To							
	inches	feet		feet							
	8.750	28.50		587.00							
	CASING RECORD										
Туре	Size	Depth From	Shoe Depth	Weight							
	inches	feet feet		pounds/ft							
	10.750	0.00	28.50	42.00							

Software: WLS 13.05.9583

Tools Run 2: SHA, MCG, MDN, MPD, MFE,,MAI

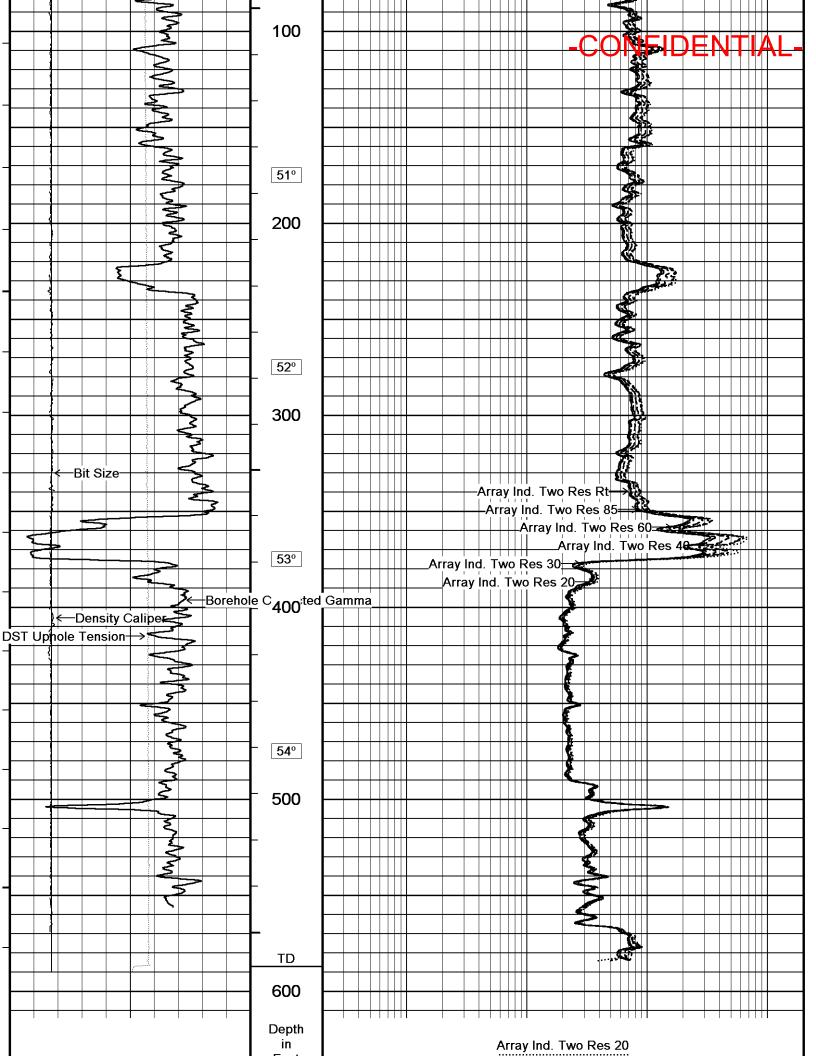
Hardware: MDN - Dual Eccentraliser MAI - Two-1 Inch Standoffs

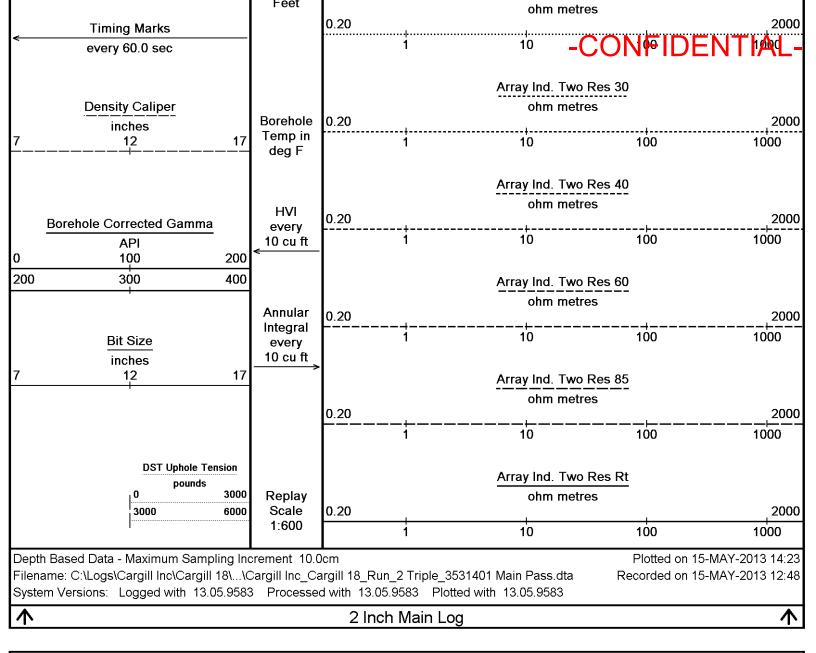
MPD - Two Roll over subs

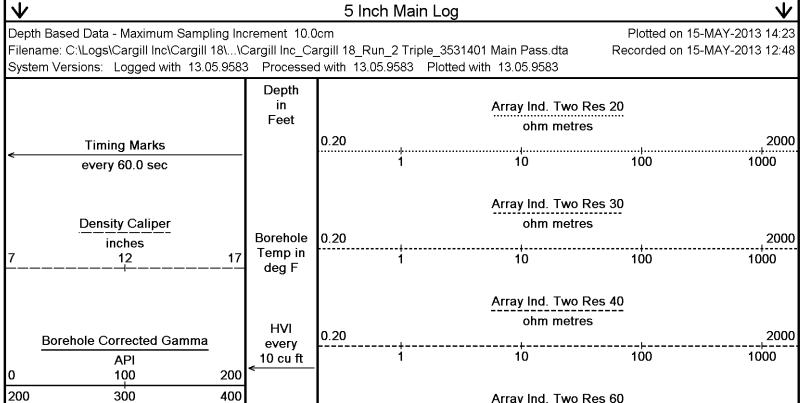
Density Matrix was ran on 2.71 gg/cc

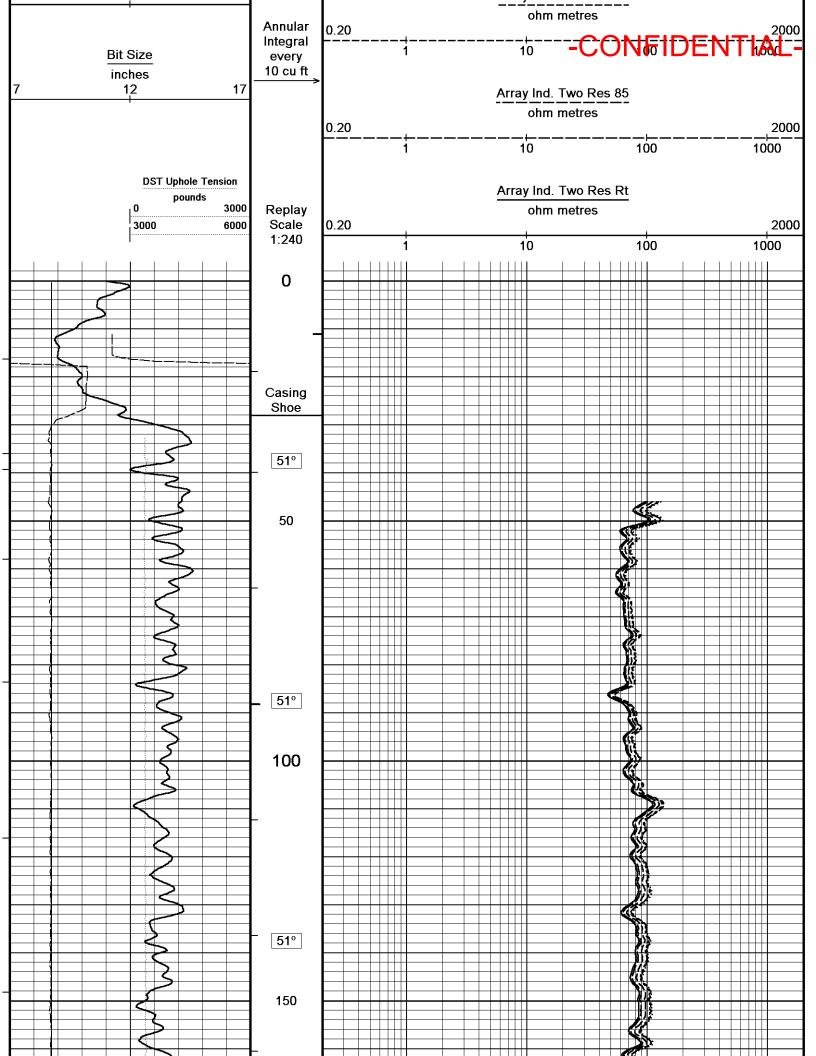
Crew: Nibras Nureldin Bruce Clark

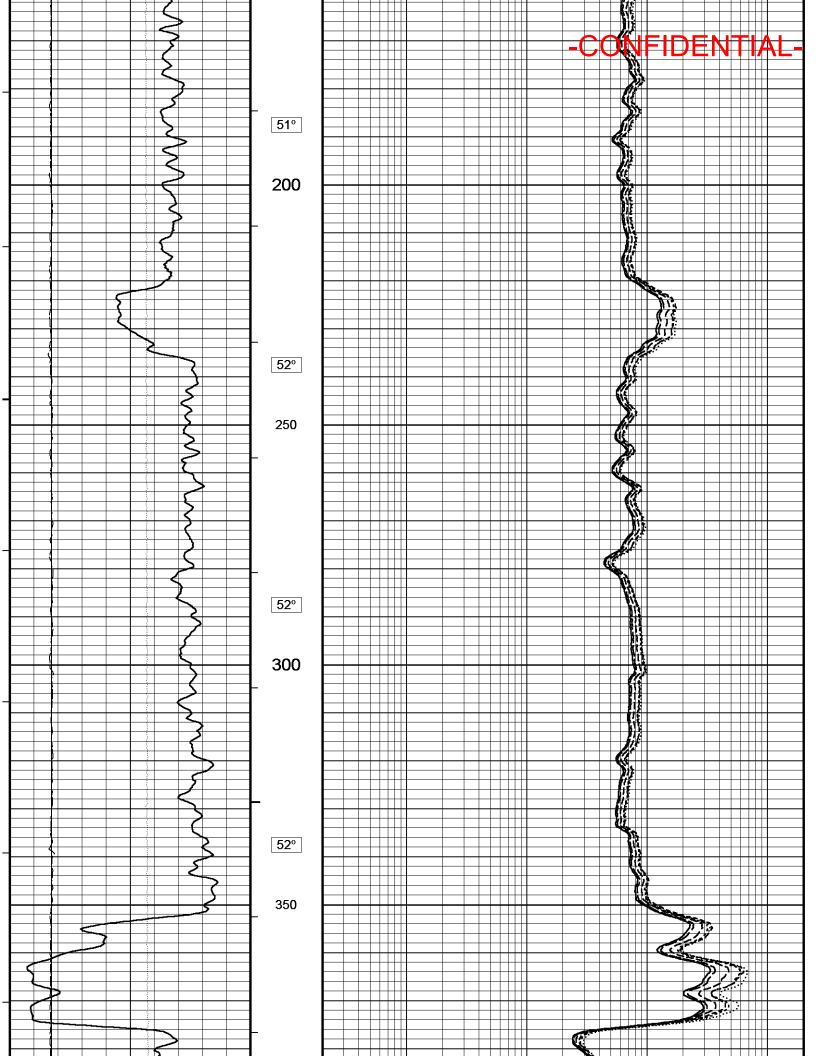
Gamma ray spikes up at the bottom of the borehole because the gamma ray sub ran below the sources 7 inch casing was used to calculate annular hole volumes Gamma ray was recorded to ground level

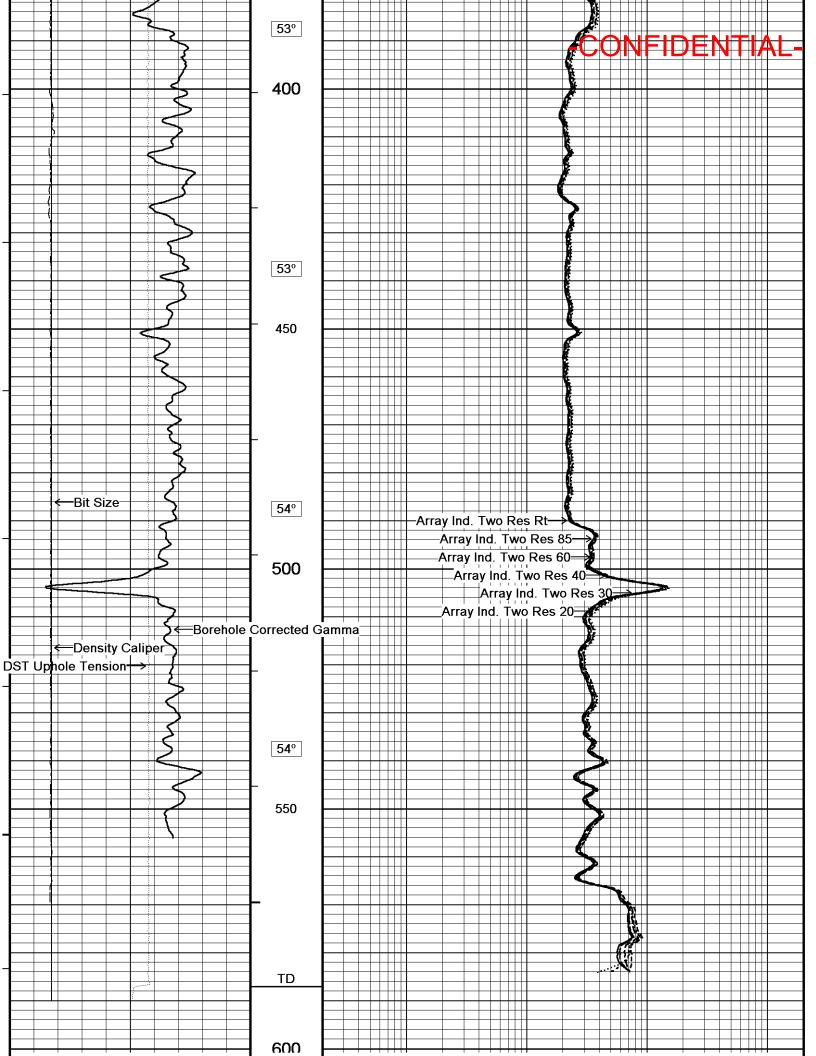

Califina ray trac recorded to ground level

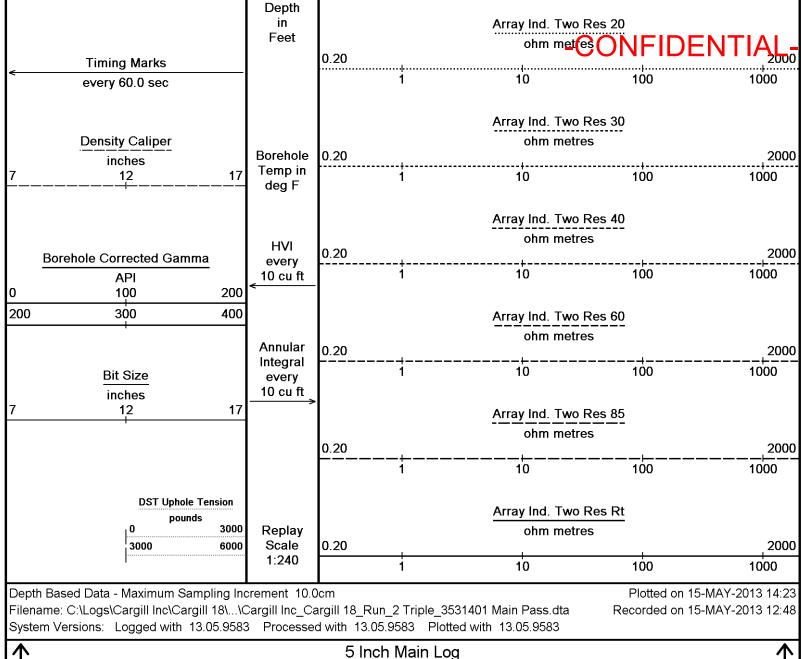

Mud Density is 8.5 lbs/USg

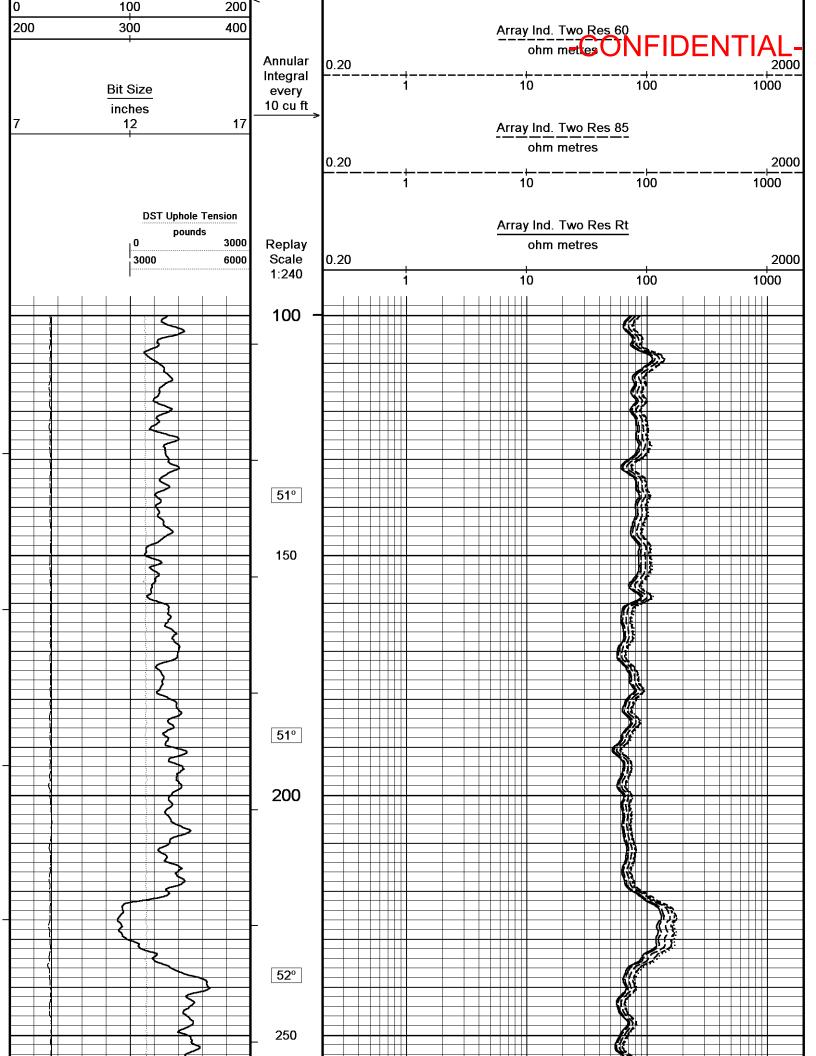

-CONFIDENTIAL

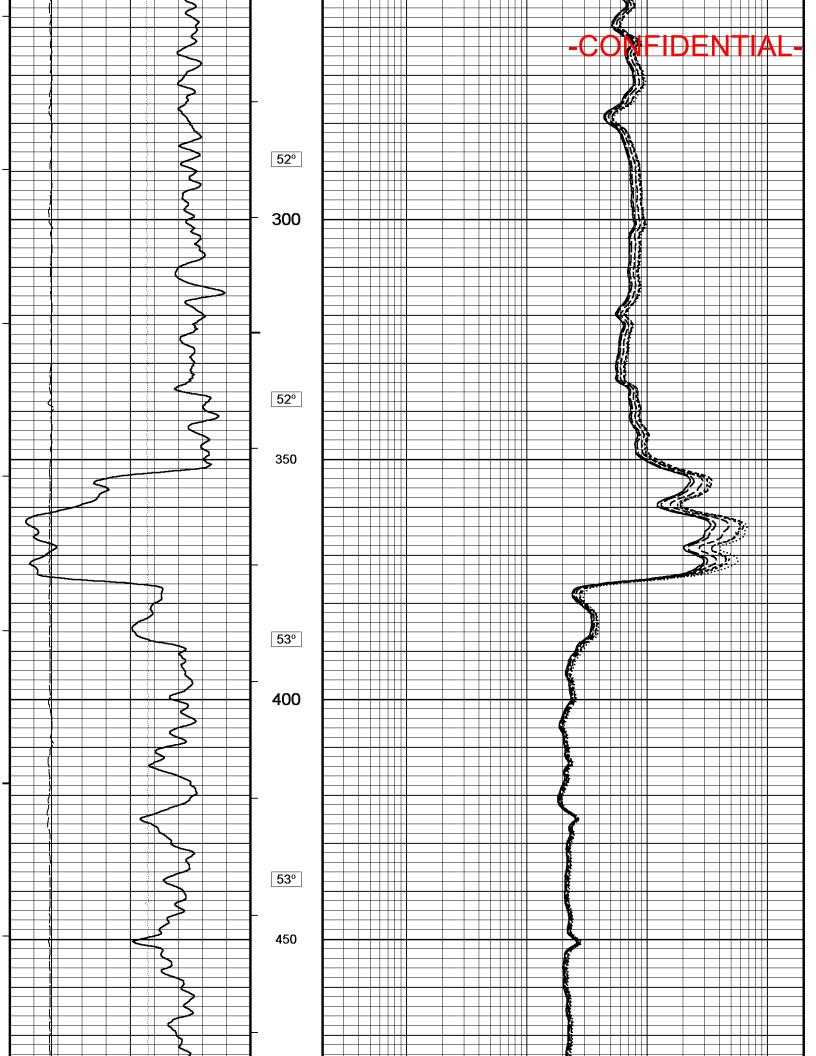

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not, guarantee the accuracy or correctness of any interpretations, and we shall not, except in the case of gross or wilful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions in our price schedule.

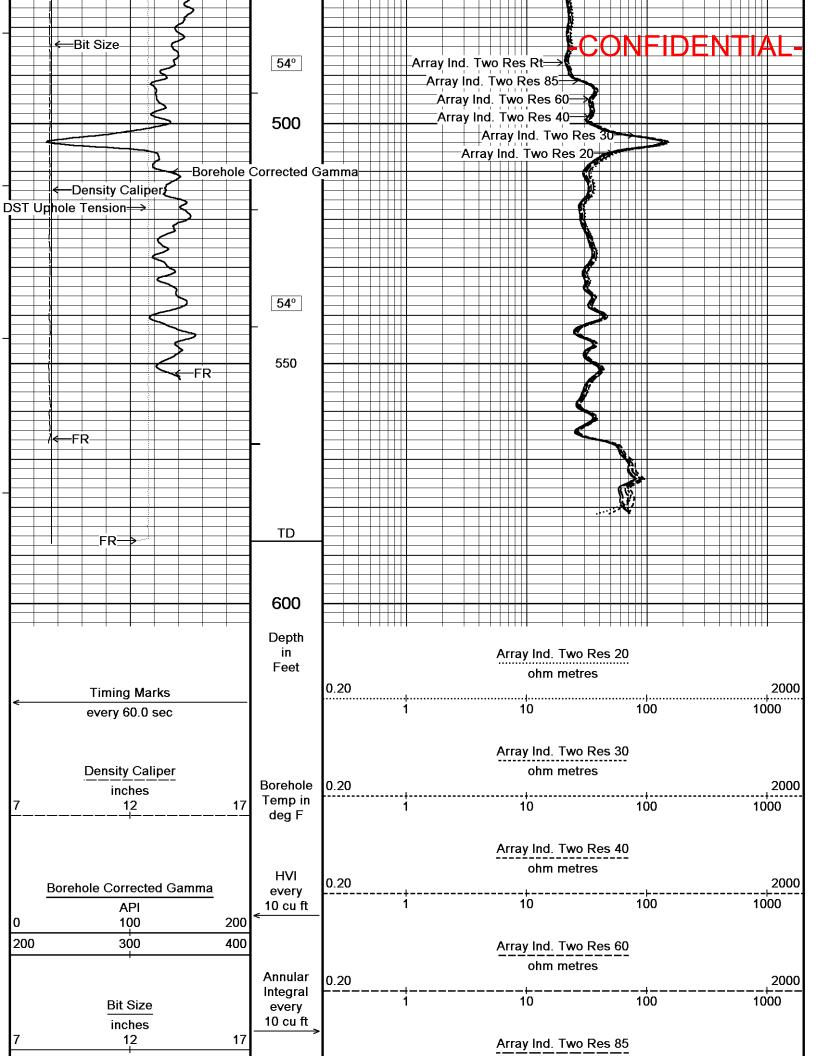

\checkmark		2 Incł	n Main	Log			\checkmark	
Depth Based Data - Maximum Sampling Ind Filename: C:\Logs\Cargill Inc\Cargill 18\\0				e_3531401 Mai	n Pass.dta		MAY-2013 14:23 MAY-2013 12:48	
System Versions: Logged with 13.05.9583								
Timing Marks	Depth in Feet	0.20		Arra	ay Ind. Tw ohm me		2000	
every 60.0 sec			1		10	100	1000	
Density Caliper	Parabala	0.00		Arra	ay Ind. Tw ohm me		2000	
inches	Borehole Temp in	0.20	·ŧ		<u>+</u>	·····	2000	
7 12 17	deg F		1		10	100	1000	
	HVI	Array Ind. Two Res 40 ohm metres 0.20 2000						
Borehole Corrected Gamma	every		+		-+ 10	⊢ 100		
API 0 100 200	_ 10 cu ft ←		I		10	100	1000	
200 300 400				Arra	ay Ind. Tw			
	Annular	ohm metres					2000	
Bit Size	Integral every 10 cu ft	0.20			-+ 10	i00	2000 1000	
inches 7 12 17	>	Array Ind. Two Res 85 ohm metres						
		0.20			2000			
			1		10		1000	
DST Uphole Tension pounds				Arra	ay Ind. Tw	/o Res Rt		
0 3000	l replay		ohm metres					
3000 6000	Scale	0.20				ł	2000	
l l	1:600		1		10	100	1000	
	0						++++++	
	_ Casing -						++++++	
	Shoe						++++++	
							++++++	
	F							
							++++++	
	┢							
	51°							

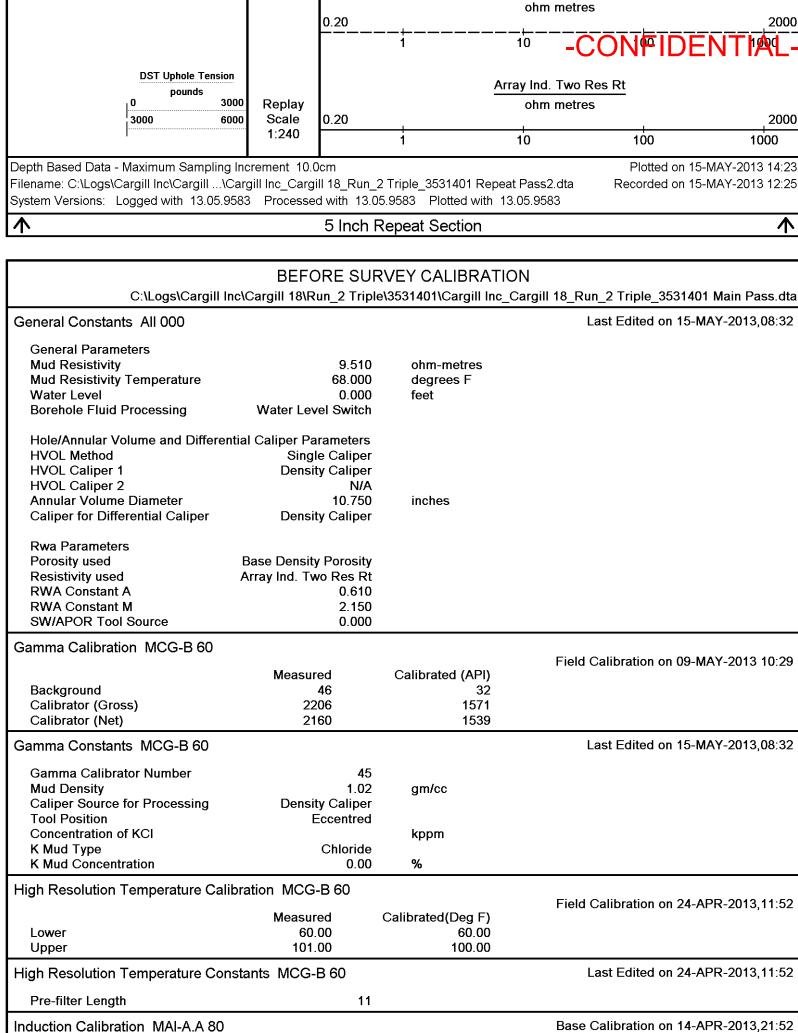




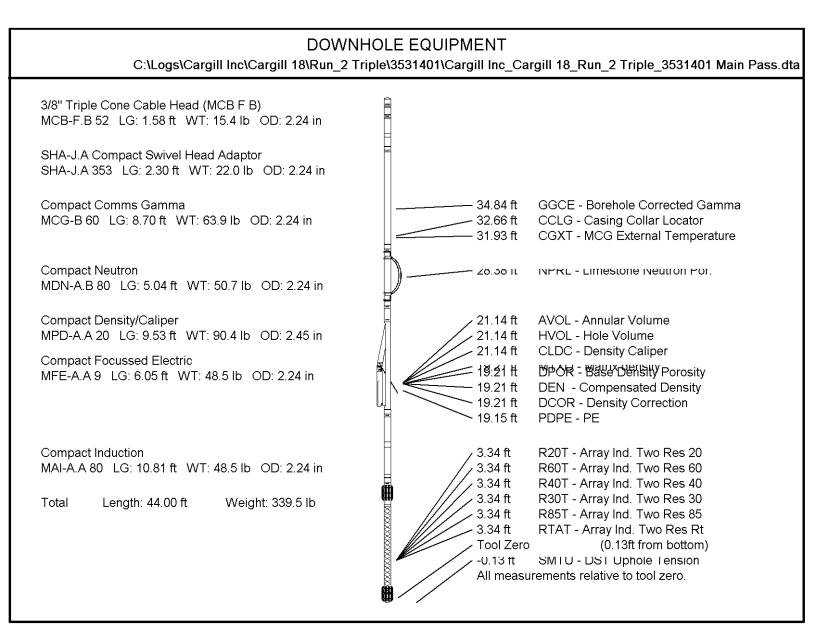







5 Inch Main Log

\checkmark		5 Inch	Repeat Se	ection		\checkmark
Depth Based Data - Maximum Sampling Ind	crement 10.0)cm			Plotted on 15	-MAY-2013 14:23
Filename: C:\Logs\Cargill Inc\Cargill\Car System Versions: Logged with 13.05.958					Recorded on 15	-MAY-2013 12:25
	Depth in			Array Ind. Two	Res 20	
	Feet	0.00		ohm metre	es	2000
Timing Marks		0.20	·····	······	·····	2000
every 60.0 sec			1	10	100	1000
Density Caliper	Porobolo	0.20		Array Ind. Two ohm metre		2000
inches 71217	Borehole Temp in deg F	0.20	 1	 10	100	20002 1000
Borehole Corrected Gamma	HVI	0.20		Array Ind. Two ohm metre		2000
API	every 10 cu ft	<u> </u>	+ 1	+ 10	 100	1000

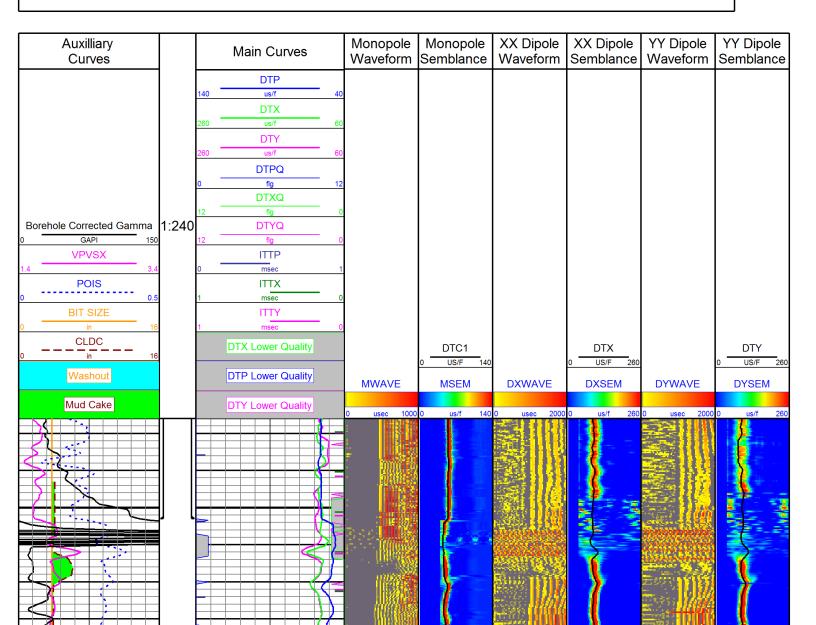


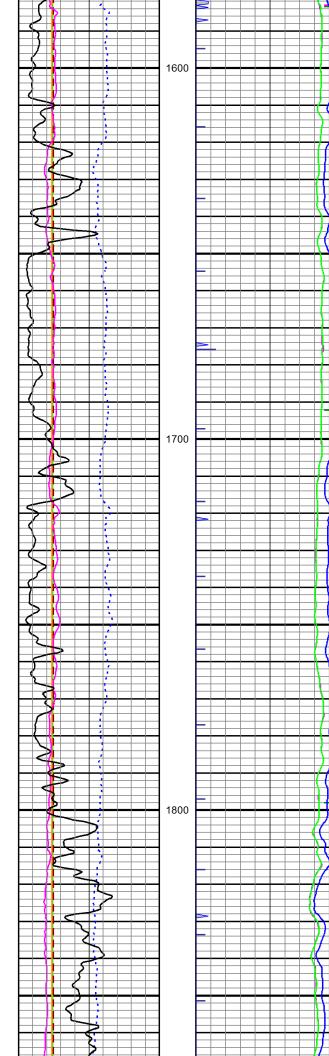
Base Calibration

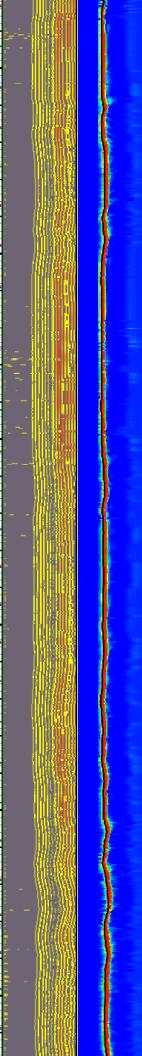
Base Calibration on 14-APR-2013,21:52 Field Check on

Test Loop Calibration		Measured	Calibrated (mm	ho/m)	
Channel	Low	High	Low	High	
1	14.6	466.5		966.2	-CONFIDENTIAL-
2	6.0	375.7		821.4	
3	3.7	255.2		566.0	
4	2.0	131.6	2.6	279.2	
Array Temperature		74.3	Deg F		
Channel	Base Check		Field Check (mm		
	Low	High	Low	High	
1 2					
3					
4					
Deep					
Medium					
Shallow					
Array Temperat		0.0		0.0	Deg F
		0.0		0.0	
Induction Constants MAI-A	.A 80				Last Edited on 15-MAY-2013,08:30
Induction Model		RtAP-WBM			
Caliper for Borehole Corr.		Density Caliper			
Hole Size for Borehole Cor	rection	N/A	inches		
Tool Centred		No Fins			
Stand-off Type Stand-off		1.00			
Number of Fins on Stand-o	off	6.0000			
Stand-off Fin Angle		60.00			
Stand-off Fin Width		1.0000	0		
Borehole Corr. Rm Source	-	Temperature Corr			
Temp. for Rm Corr.	MCG Exte	rnal Temperature			
Squasher Start		0.0020			
Squasher Offset		N/A	mhos/metre		
Borehole Normalisation					
DRM1	0.0000	DRC1		0.0	000
DRM2	0.0000	DRC2		0.0	000
MRM1	0.0000	MRC1			000
MRM2	0.0000	MRC2			000
SRM1 SRM2	0.0000 0.0000	SRC1 SRC2			000 000
SRMZ	0.0000	SRC2		0.0	000
Calibration Site Correction	S				
Channel 1		0.00			
Channel 2 Channel 2		0.00			
Channel 3 Channel 4		0.00 0.00			
		0.00	mmos/metre		
Apparent Porosity and Wat	ter Saturation				
Archie Constant (A)		1.00			
Cementation Exponent (M)	i	2.00			
Saturation Exponent (N)	o.r.	2.00 100.00			
Saturation of Water for Apo Resistivity of Water for Apo		0.05	•		
Resistivity of Mud Filtrate f		0.00			
Source for Rt		0.00			
Source for Rxo		0.00			
Caliper Calibration MPD-A	.A 20				Base Calibration on 14-MAY-2013 15:42
Base Calibration					Field Calibration on 14-MAY-2013 15:47
Reading No		Measured	Calibrator Size (in)		
l ĭ		25425	6.03		
2		35728	7.99		
3		45344	9.85		
4		55749	11.82		
5		0	0.00		
6		N/A	N/A	l I	

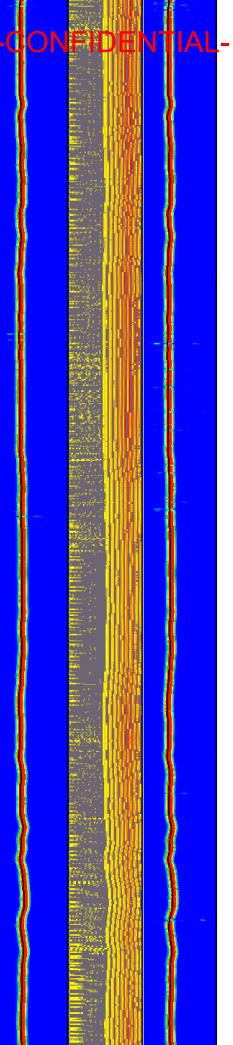
COMPANY		Cargill Inc.			
WELL		Cargill 18			
FIELD		Lansing			
PROVINCE/COL	INTY	Tompkins Coun	ty		
COUNTRY/STAT	E	U.S.A. / New Yo	rk		
Elevation Kelly Bushing	883.00	feet	First Reading	547.00	feet
Elevation Drill Floor	887.00	feet	Depth Driller	590.00	feet
Elevation Ground Level	887.00	feet	Depth Logger	587.00	feet
W eather	ford	Array Inductio Bamma Ray	n		

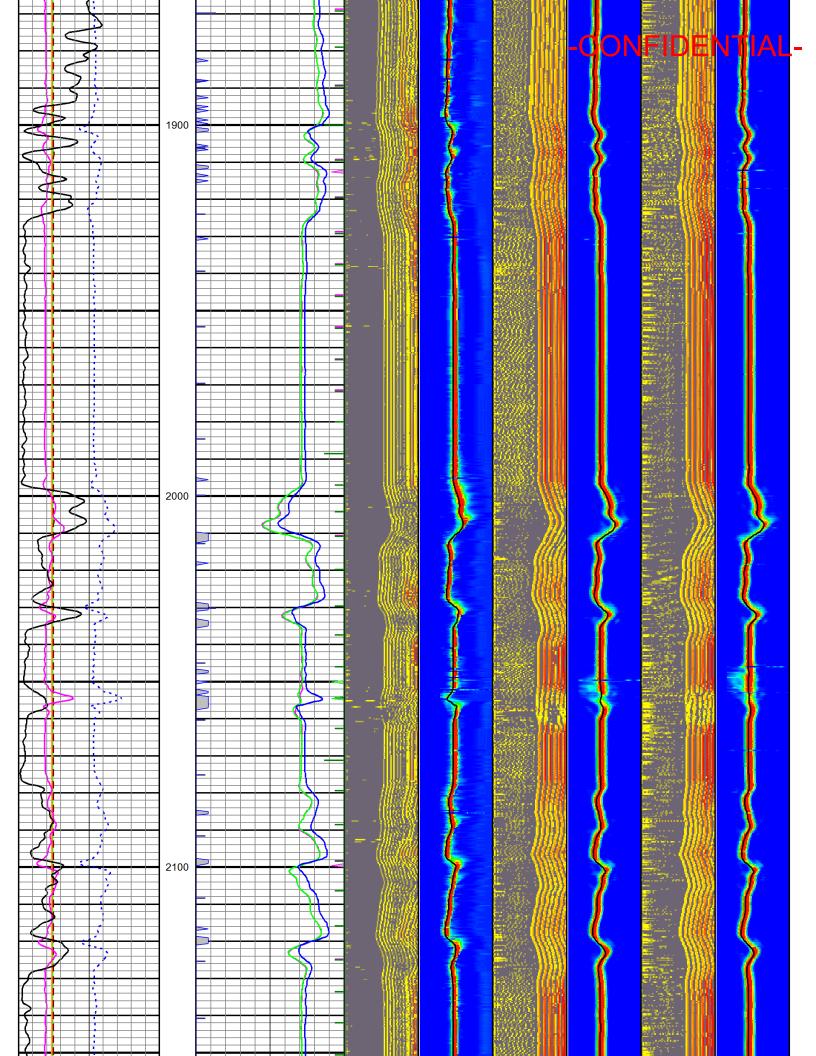

ΓIAL-					
	• eatherford	lord	0	MONOPOLE - DIPOLE ARRAY SEMBLANCE	үдү
COMPANY:	Cargill, Inc.				
	Cargill 18				
FIELD:	Lansing				
COUNTY:	Tompkins County	Inty	STATE:	U.S.A. / New York	
Location:	X=820507.58, Y=937023.59	37023.59	Latitude:	Other Services: Gamma Ray Density Caliper	
API:			Longitude:		
Licence:	Z/Elevation=784.16 ft	Ħ			
Permanent Datum:	I: G.L.	Elevation:	748.16 ft	Elevations: K.B.:	752.16 ft
Log measured from	m G.L.	above Perm	above Permanent Datum	D.F.:	752.16 ft
Drilling measured from	from G.L.L.			G.L.:	748.16 ft
Date		20-Aug-2013			
Run Number		Five			
Depth Driller		3040048 2486.00 ft			
Depth Logger		2488.00 ft			
First Reading		2488.00 ft			
Last Reading		2488.00 ft 10 75 in	@ 1554 00 ft	9	
Casing Logger		1553.00 ft		(
Bit Size		3.780 in			
Hole Fluid Type		Brine		_	
pH	Fluid Loss	0.000 10/0	27.00 300		
Sample Source		Flow Line			
Rm @ Measured Temperature	mperature	0.049 ohm-	8	®	
Rmf @ Measured Temperature	emperature	0.037 OHMM	1 @ 78.0 ohm -m	3 @	
Source Rmf	Rmc	Calc.	(
Rm @ BHT	-	0.049 ohm-	@ _	0	
Time Since Circulation	on	4 Hrs			
Maximum Recorded Temperature	Temperature	78.0°F	0	@	
Equipment No.	Location	1304	Muncy		
Recorded By		Nibras Nureldin	a; ⊐		
Witnessed By		Patrick McGrath	ath		

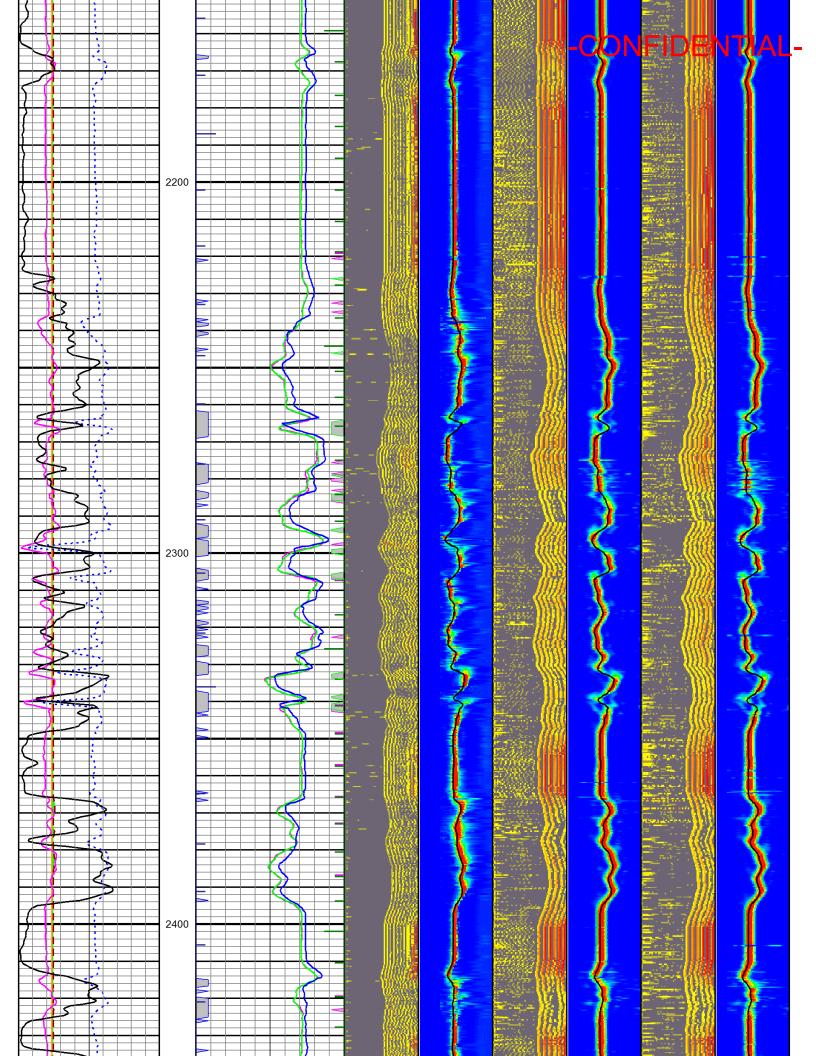

All interpretation of log data are opinions based on inferences from electrical or other measurements. We do not guarantee the accuracy or correctness of any interpretation or recommendation and we shall not be liable or responsible for any loss, cost, damages or expenses incurred or sustained by anyone resulting from any interpretation or recommendation made by any of our employees or agents.


Rig:	Remarks:	Service Order #	3540548
Drilling Stopped Circulation Stopped 4 Hrs Tool on Bottom BHT	Software: WLS 13.06.9804 Tools Run 1: MBE, MBE,SHA, MCG, MDN, MPD, MFE, UG,MDL,MLG,BHT Hardware: MDL - Two-1 Inch Standoff Density Matrix was ran on 2.71 gg/cc Crew: Nibras Nureldin Shane Glowcheski		
	Equipment Data		
ТооІ Туре	Тоо! Туре	Othe	r

GGCE


	VPVSX	VP/VS RATIO X-SHEAR		
	CLDC	DENSITY CALIPER		
	POIS	POISSON RATIO FROM DTX		
	BIT SIZE	BITSIZE		ΤΙΛΙ
TRACK	< 3		-CONFIDEN	IIAL
	DTP	DELTA TIME COMPRESSIONAL - FROM SEMBLANCE		
	DTX	DELTA TIME SHEAR - FROM X DIPOLE SEMBLANCE		
	DTY	DELTA TIME SHEAR - FROM Y DIPOLE SEMBLANCE		
	ITTP	INTEGRATED TRAVEL TIME COMPRESSIONAL		
	ITTX	INTEGRATED TRAVEL TIME X DIPOLE SHEAR		
	ITTY	INTEGRATED TRAVEL TIME Y DIPOLE SHEAR		
TRACK	ζ 4			
	MWAVE	MONOPOLE WAVEFORM - FIRST RECIEVER		
TRACK	ζ 5			
	MSEM	MONOPOLE SEMBLANCE PLOT		
	DTP	DELTA TIME COMPRESSIONAL - FROM SEMBLANCE		
TRACK	6			
	XWAVE	X DIPOLE WAVEFORM - FIRST RECEIVER		
TRACK	κ 7			
	DXSEM	X DIPOLE SEMBLANCE PLOT		
	DTX	DELTA TIME SHEAR X - FROM SEMBLANCE		
TRACK	ζ 8			
	YWAVE	Y DIPOLE WAVEFORM - FIRST RECEIVER		
TRACK	(9			
	DYSEM	Y DIPOLE SEMBLANCE PLOT		
	DTY	Y DELTA TIME SHEAR - FROM SEMBLANCE		
* * * * * *	* * * * * * * * * * * * * *	************************		





+

					-CDN		NTAL
Mud Cake	DTY Lower Quality	MWAVE	MSEM	DXWAVE	DXSEM	DYWAVE	DYSEM
Washout	DTP Lower Quality	0 usec 1000	0 us/f 140	0 usec 2000	0 us/f 260	0 usec 2000	0 us/f 260
CLDC	DTX Lower Quality		DTC1 0 US/F 140		0 US/F 260		0 US/F 260
0 in 16 BIT SIZE	ΙΠΤΥ						
0 in 16	1 msec 0						
POIS	ΙΤΤΧ						
0 0.5 VPVSX	1 msec 0						
1.4 VPV5X 3.4	0 ITTP 0 msec 1						
Borehole Corrected Gamma	DTYO						
0 GAPI 150 1:240							
	12 DTXQ 0						
	DTPQ						
	0 flg 12						
	DTY						
	260 us/f 60						
	DTX						
	260 us/f 60 DTP						
	140 us/f 40						
Auxilliary Curves	Main Curves	Monopole Waveform	Monopole Semblance	XX Dipole Waveform	XX Dipole Semblance	YY Dipole Waveform	YY Dipole Semblance

STATE:	U.S.A. / New York	
COUNTY:	Tompkins County	
FIELD:	Lansing	
WELL:	Cargill 18	
COMPANY:	Cargill, Inc.	

MONOPOLE - DIPOLE ARRAY SEMBLANCE

		Pho	Photo Density	
Weatherford	ord [®]	Ga	Gamma Ray	
	Cargill, Inc. Cargill 18			
	Lansing			
T.	Tompkins County	nty		
STATE	U.S.A. / New York	′ork		
LOCATION X=	820507.58,	X=820507.58, Y=937023.59		
PERMITINUMBER Z/E	Z/Elevation=784.16	34.16 WEL		
SEC TWP R	RGE Othe	Other Services		
	Dual	Dual Laterolog Cross Dipole	Data Pack Caliper	
API Number				
Permanent Datum Ground Level, Elevation 748.16 feet	Level, Elevation	748.16 feet	Elevations:	feet
Log Measured From GL				752.16 752.16
Dillilly Measuled Floth GLL			GL	748.16
Date	20-Aug-2013			
Run Number	Five			
Service Order	3540548			
Depth Driller	2486.00	feet		
Depth Logger	2488.00	feet		
First Reading	2488.00	feet		
Last Reading	30.00	feet		
Casing Driller	1554.00	feet		
Casing Logger	1553.00	feet		
Bit Size	3.780	inches		
Hole Fluid Type	Brine	-	-	
Density / Viscosity	8.60 lb/USg	g 27.00 sec/qt		
PH / Fluid Loss				
Sample Source	Flow Line			
Rm @ Measured Temp	0.049 @ 78.0	ohm-m		
Rmf @ Measured Temp	0.037 @ 78.0	ohm-m		
Rmc @ Measured Temp	0.073 @ 78.0	ohm-m		
Source Rmf / Rmc	Calc.	Calc.		
Rm @ BHT	0.049 @ 78.0	ohm-m		
Time Since Circulation	4 Hrs			
Max Recorded Temp	78.00	deg F		
Equipment / Base	13041	Muncy		
Recorded By	Nibras Nureldin			
Witnessed By	Patrick McGrath	зth		
			•	

		BOREHOLE RECC	RD		Last Edited: 20-AUG-2013 14:46		
	Bit Size	Depth From			Depth To		
	inches	feet			feet		
	8.750	28.50			580.00		
	6.250	580.00			1553.00		
	3.780	1553.00			2488.00		
		CASING RECOR	D				
Туре	Size	Depth From	Shoe	e Depth Weight			
	inches	feet		feet	pounds/ft		
	10.750	0.00		28.00	42.00		
	7.000	0.00		580.00	17.00		
	4.500	0.00	1:	553.00	9.50		

REMARKS

Software: WLS 13.06.9804

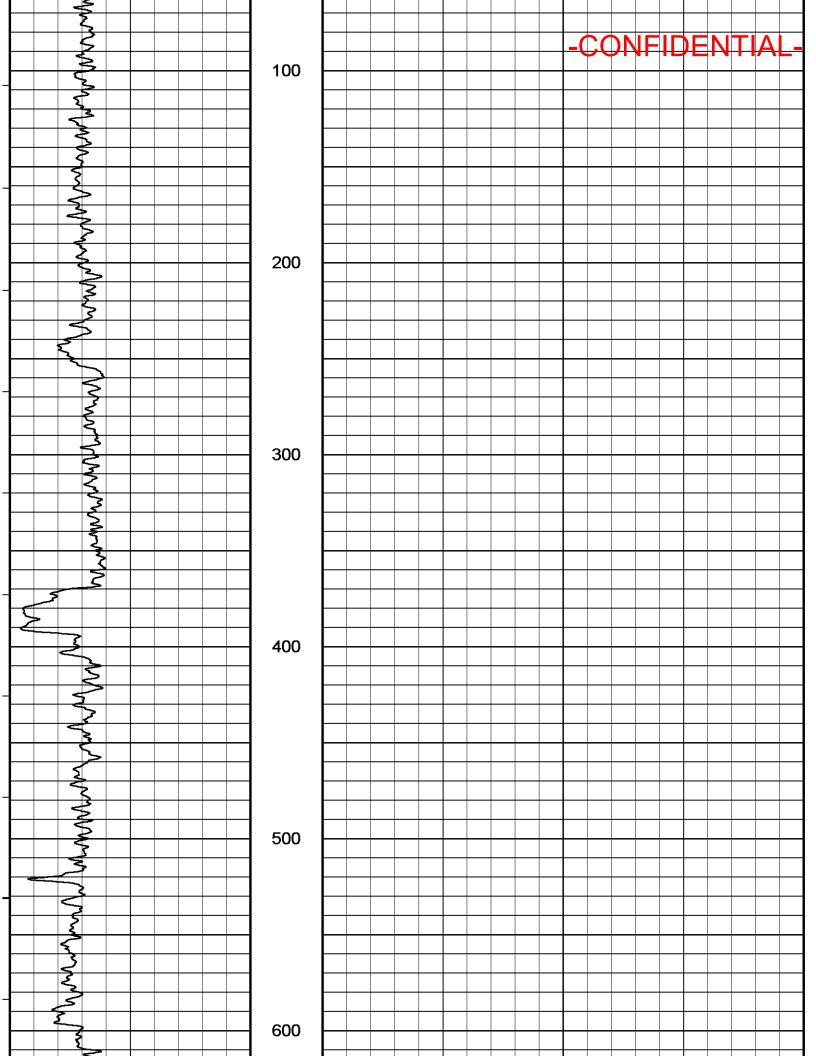
Tools Run 1: MBE, MBE, SHA, MCG, MDN, MPD, MFE, MUG, MDL, MLG, BHT

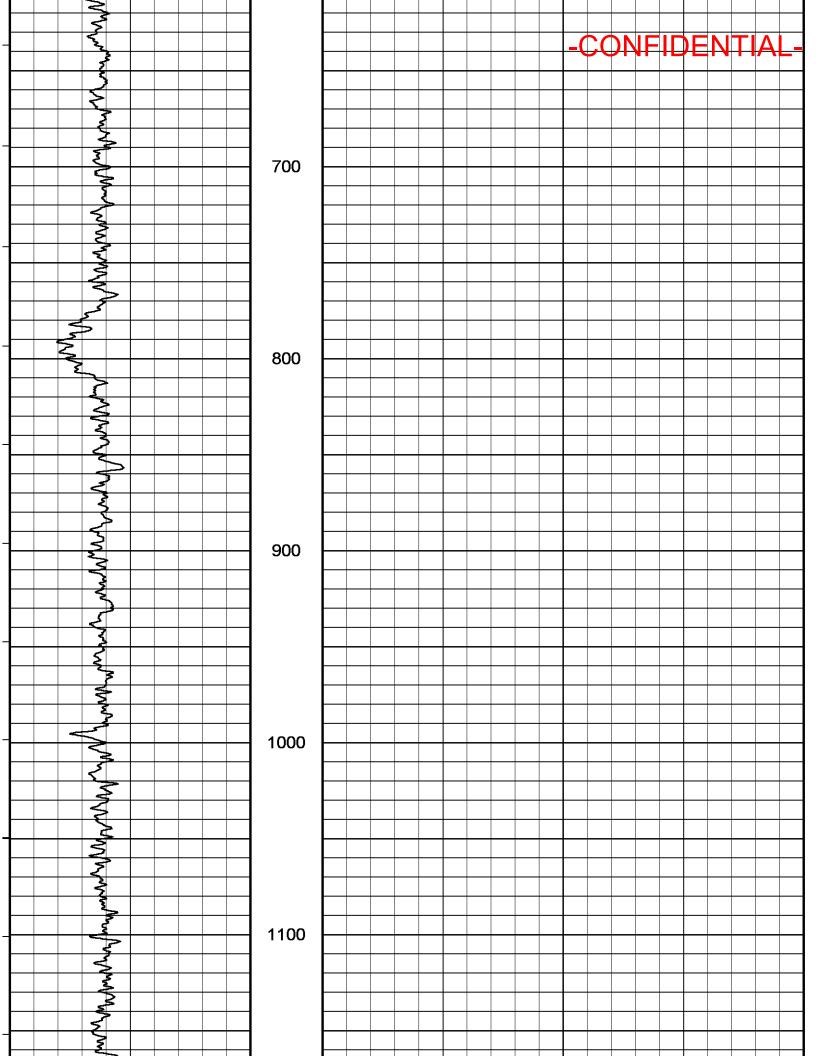
Hardware:

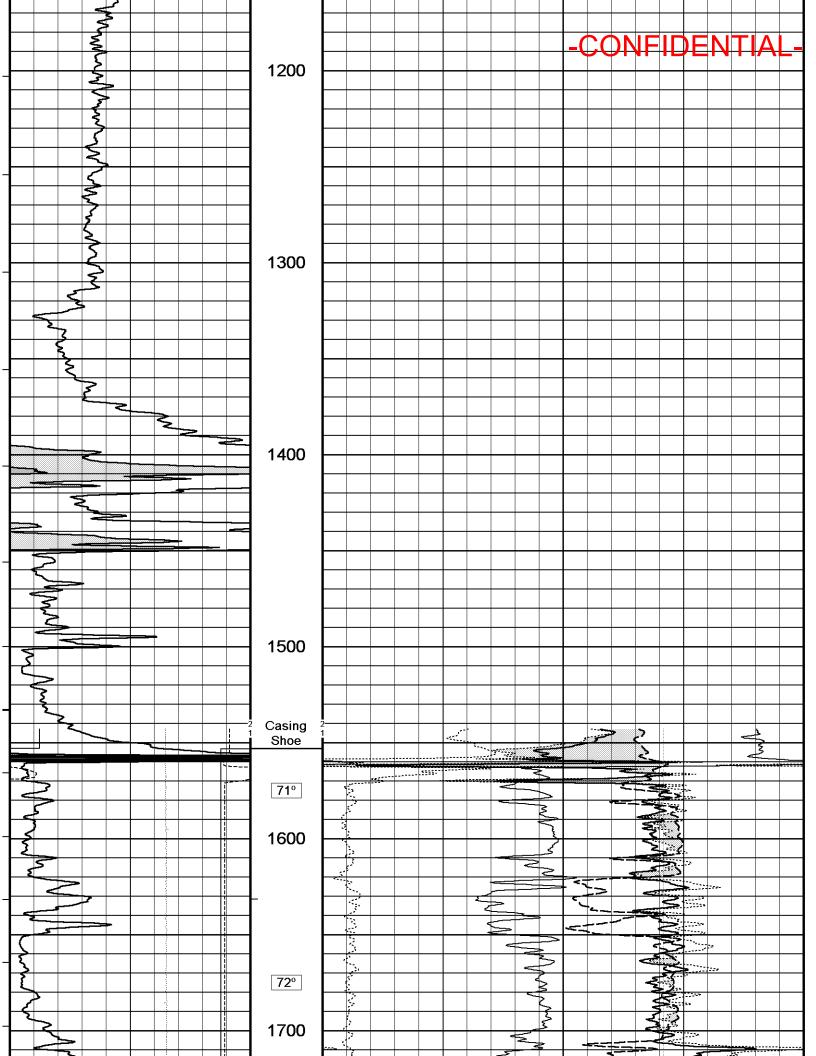
MDL - Two-1 Inch Standoffs

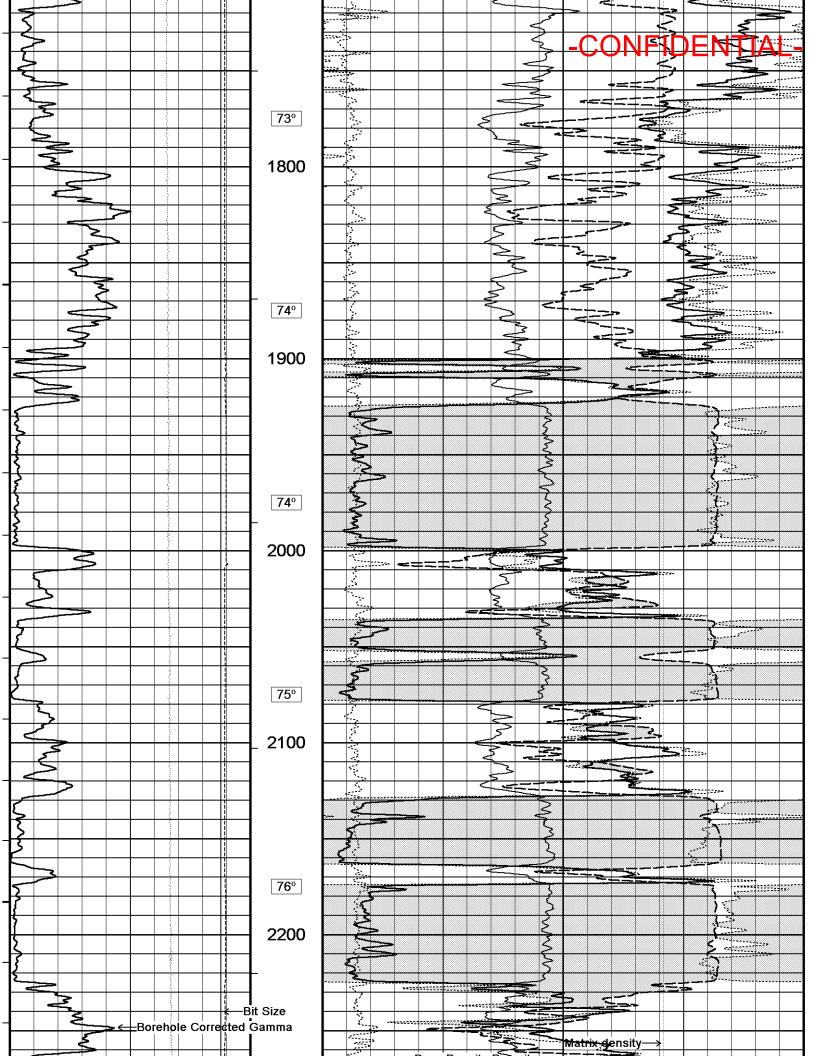
Density Matrix was ran on 2.71 gg/cc

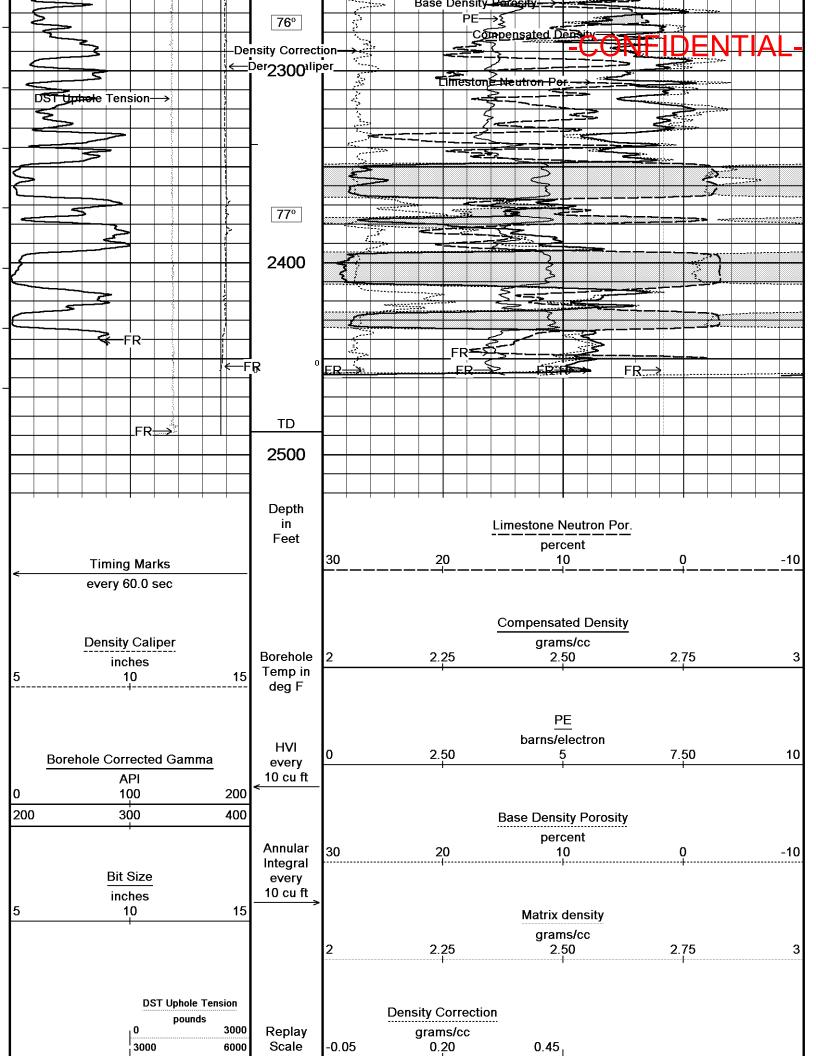
Crew: Nibras Nureldin Shane Glowcheski Gamma ray spikes up at the bottom of the borehole because the gamma ray sub ran below the sources 3.75 inch casing was used to calculate annular hole volumes Gamma ray was recorded to ground level

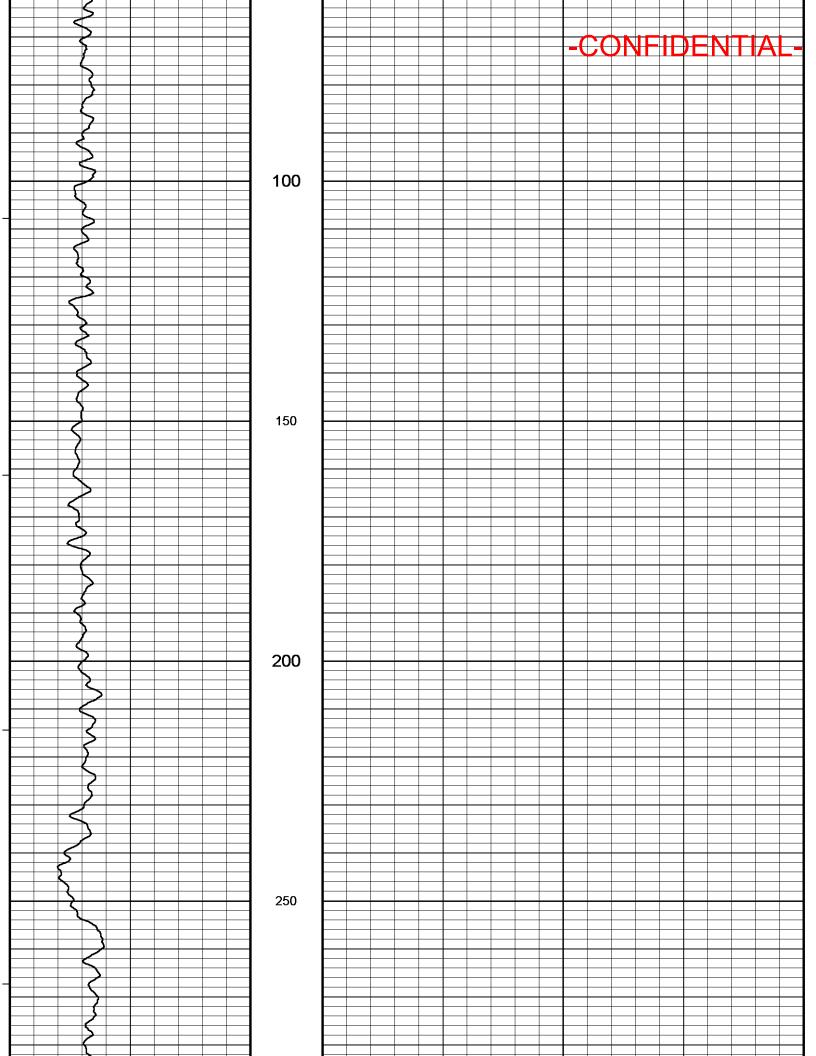

-CONFIDENTIAL-

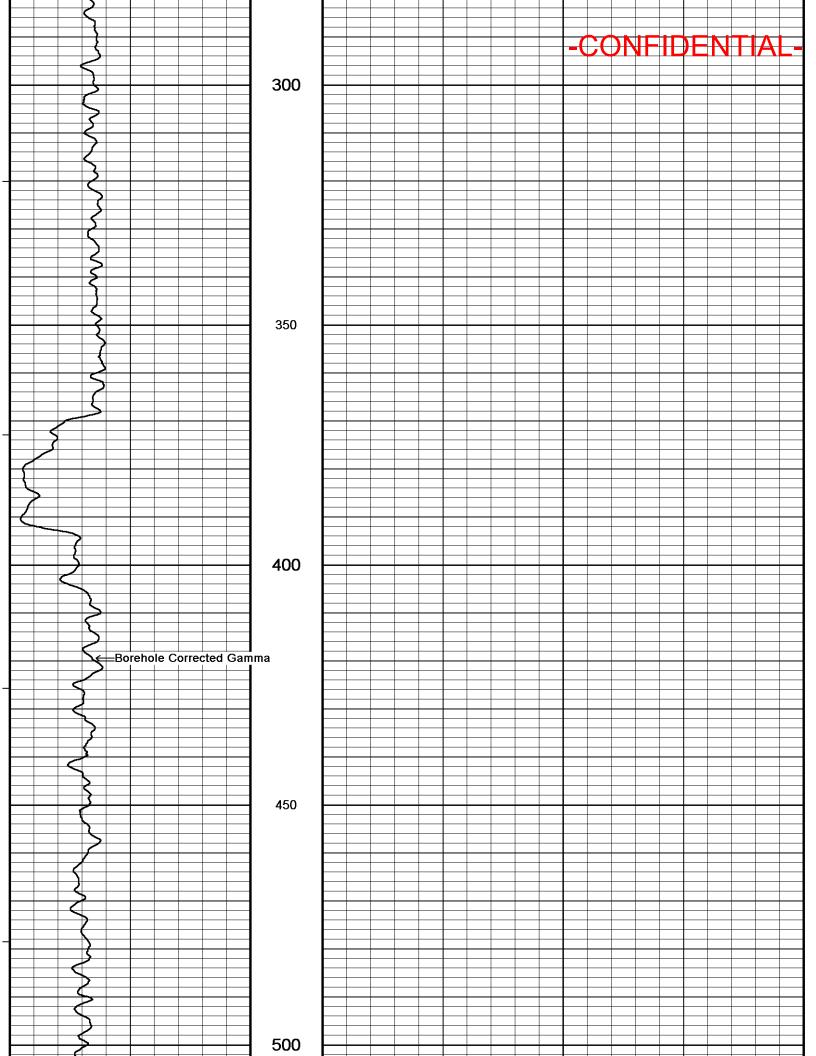

No Mud report was found on location. 100% Brine was added to the well that had 10% brine water in the well.

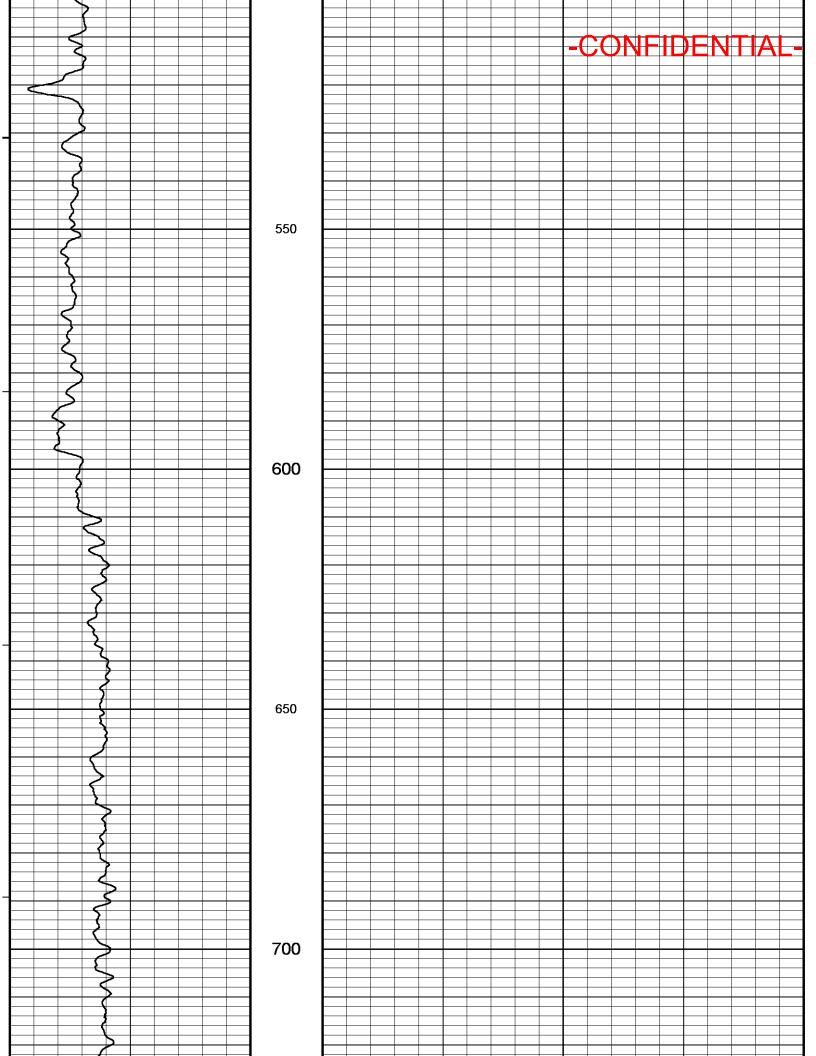

Mud Density is 9.5 lbs/USg

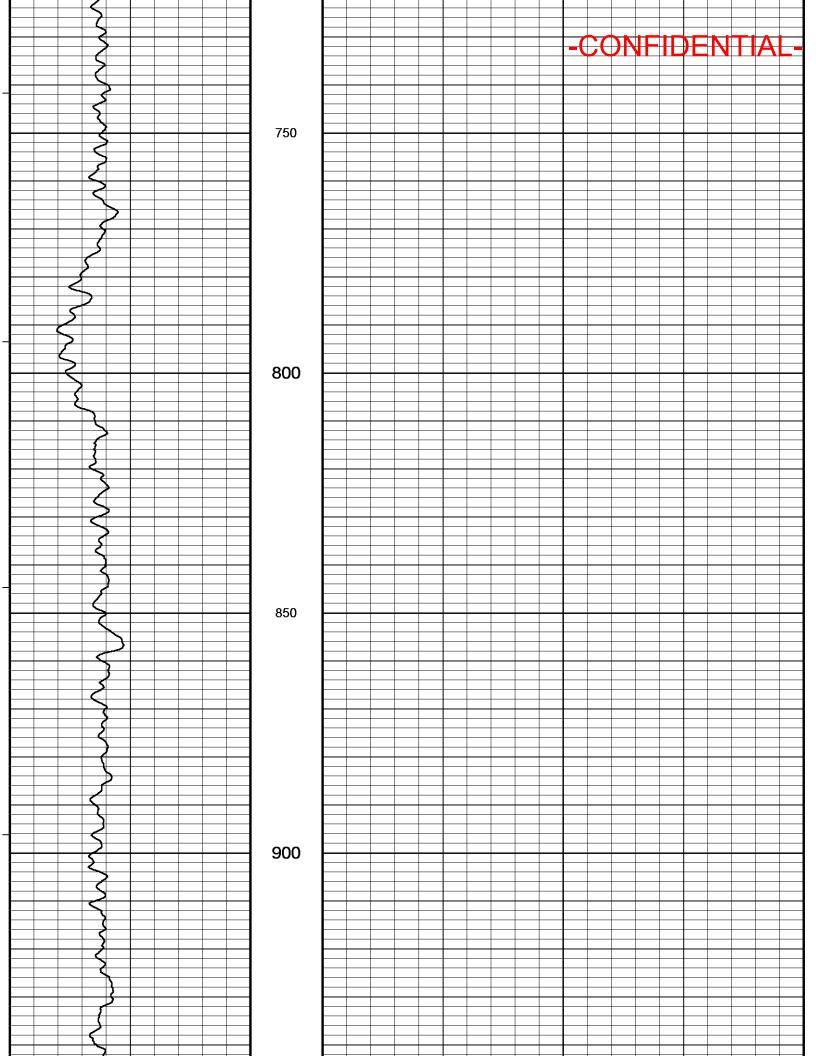

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not, guarantee the accuracy or correctness of any interpretations, and we shall not, except in the case of gross or wilful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions in our price schedule.

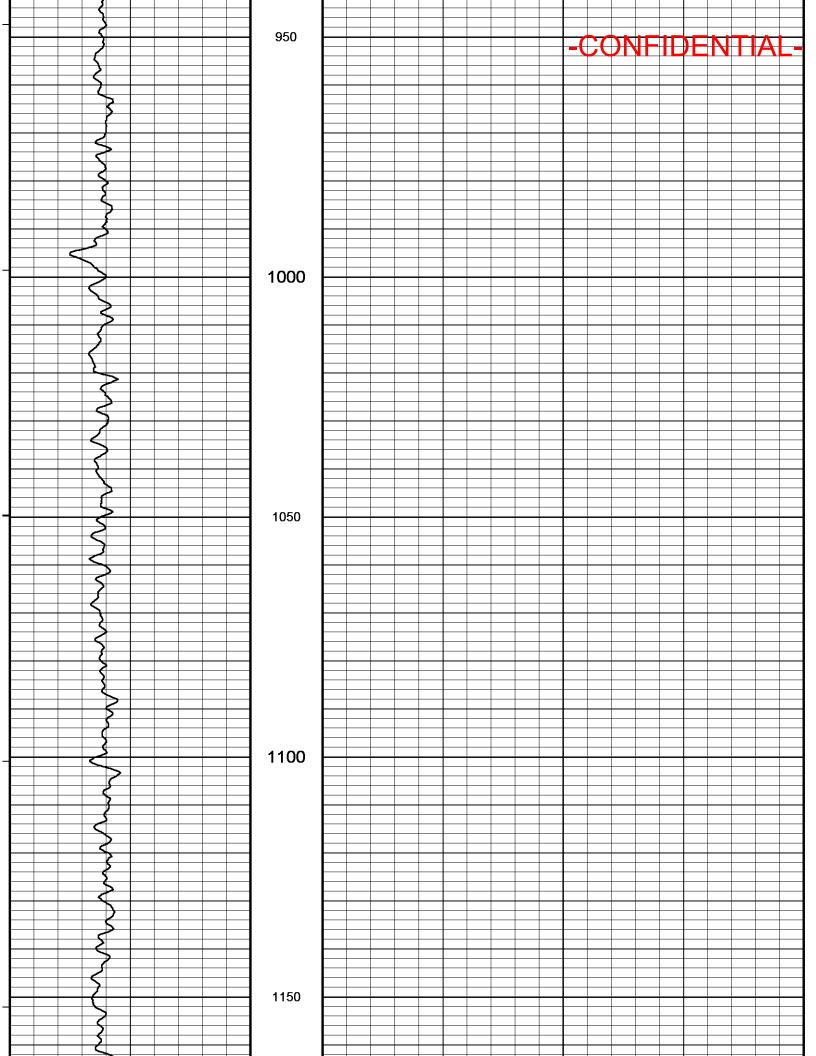

\mathbf{V}			2	Inch	Main	ו Lo	g							 		\mathbf{V}
Filena	n Based Data - Maximum Sampling I ame: C:\Logs\Cargill Inc\Cargill 18\ m Versions: Logged with 13.06.98	Cargill Inc_C	argill 18			ole_3	5405	48 Ma	ain P	ass.c	dta					3 15:37 3 13:39
	Timing Marks every 60.0 sec	Depth in Feet	30			20		Lim	nesto	рего	Veut cent 0	ron P	<u>'or</u> .	 0	 	-10
5	Density Caliper inches 10 1	Borehole 5 Temp in 6 deg F	2		:	2.25		<u>C</u>	-	ensa gram 2.3	ns/co	Densi	ity	 2.75		3
0	Borehole Corrected Gamma API 100 20	HVI every 10 cu ft	0		:	2.50			bai	rns/e	E elect	ron		 7.50	 	10
200	300 40 Bit Size	Annular Integral every	30			20		Ba	ase C	рего		orosi	ity	 0 1	 	-10
5	inches 10 1 t	5 10 cu ft	2			2.25				atrix gran 2.:	ns/co			 2.75	 	3
	DST Uphole Tension pounds 0 300 3000 600		-0.05	<u>D</u>		(Coi ams/ 0.20	'cc	on	().45						
		- 10 - -														

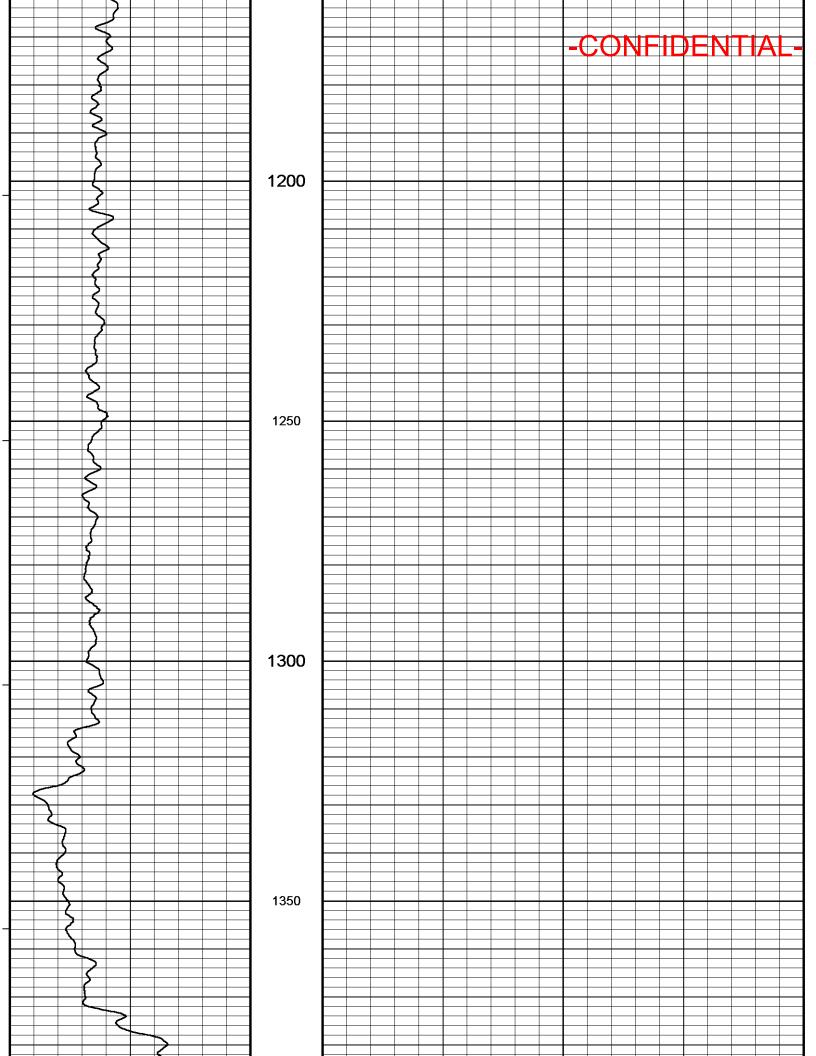


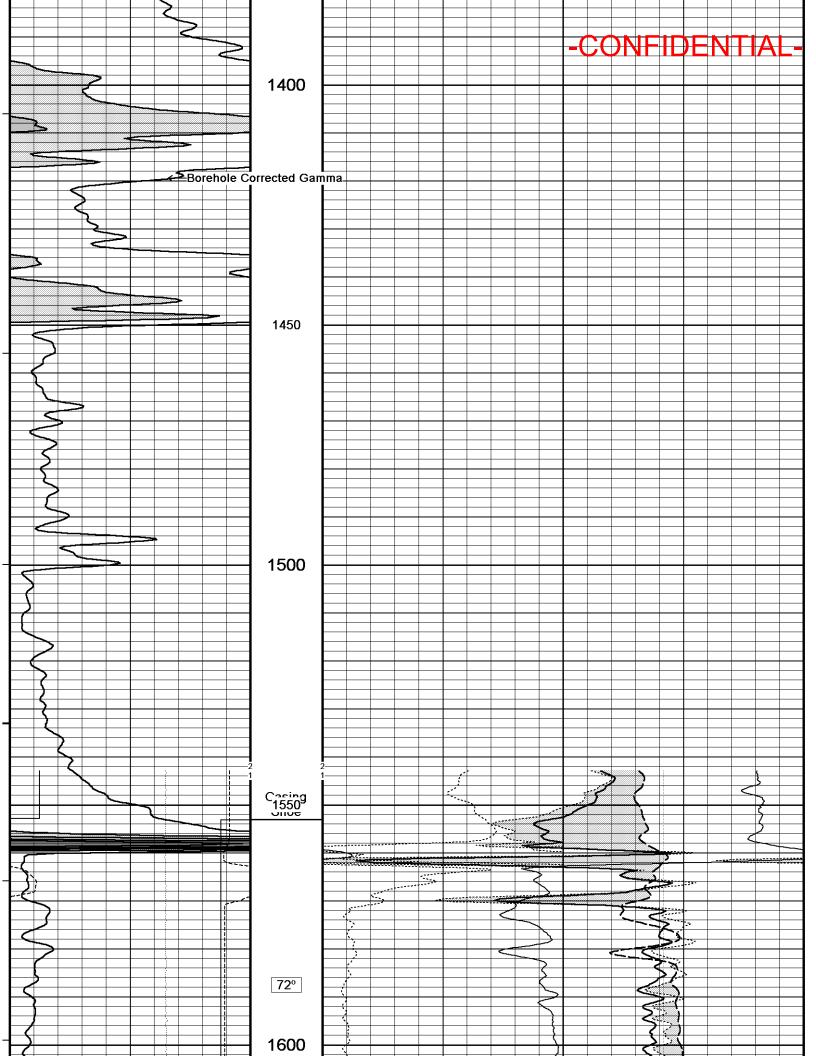


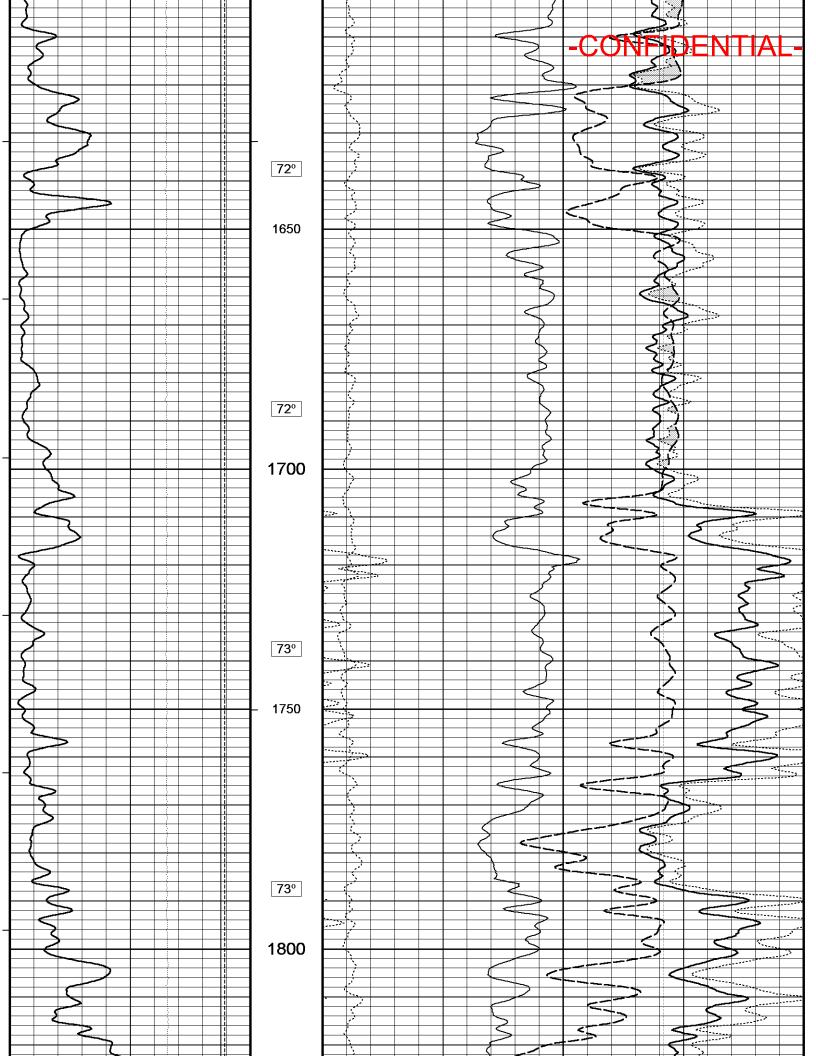


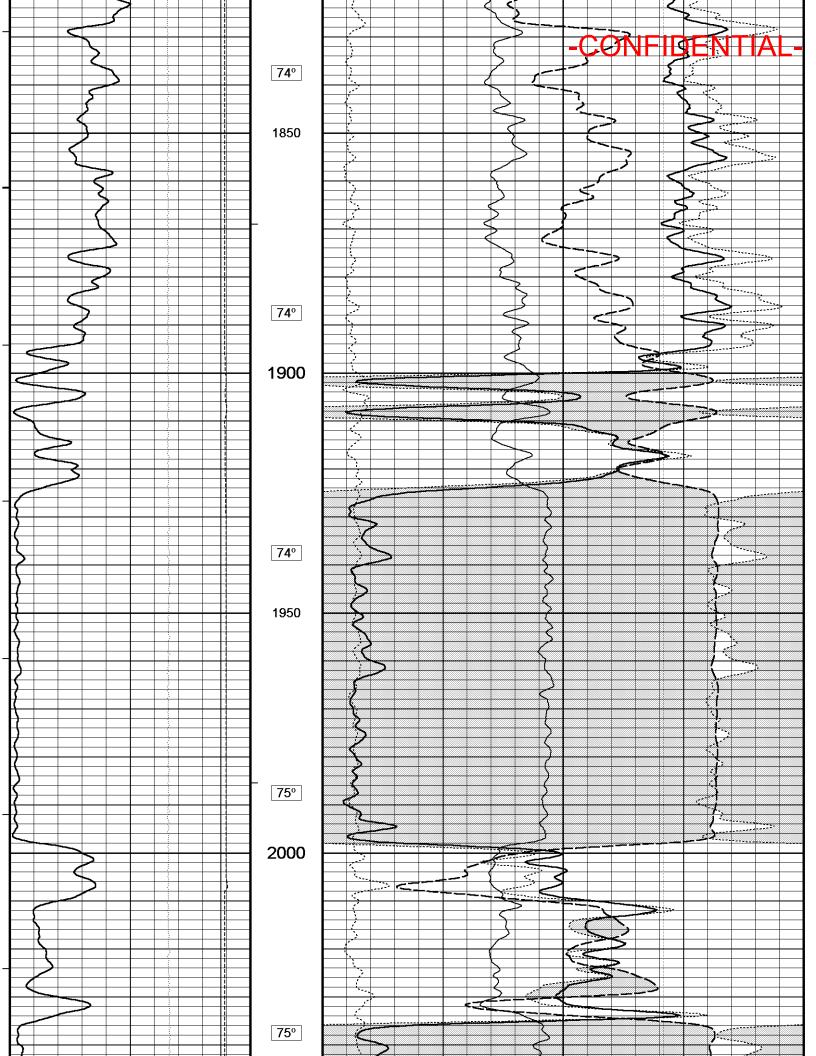

	1:600		
Depth Based Data - Maximum Sampling Inc	rement 10.0		<mark>5</mark> :37
Filename: C:\Logs\Cargill Inc\Cargill 18\\C	Cargill Inc_Ca	argill 18_Run_5_Triple_3540548 Main Pass.dta	3:3 9
System Versions: Logged with 13.06.9804			
\wedge		2 Inch Main Log	\mathbf{A}

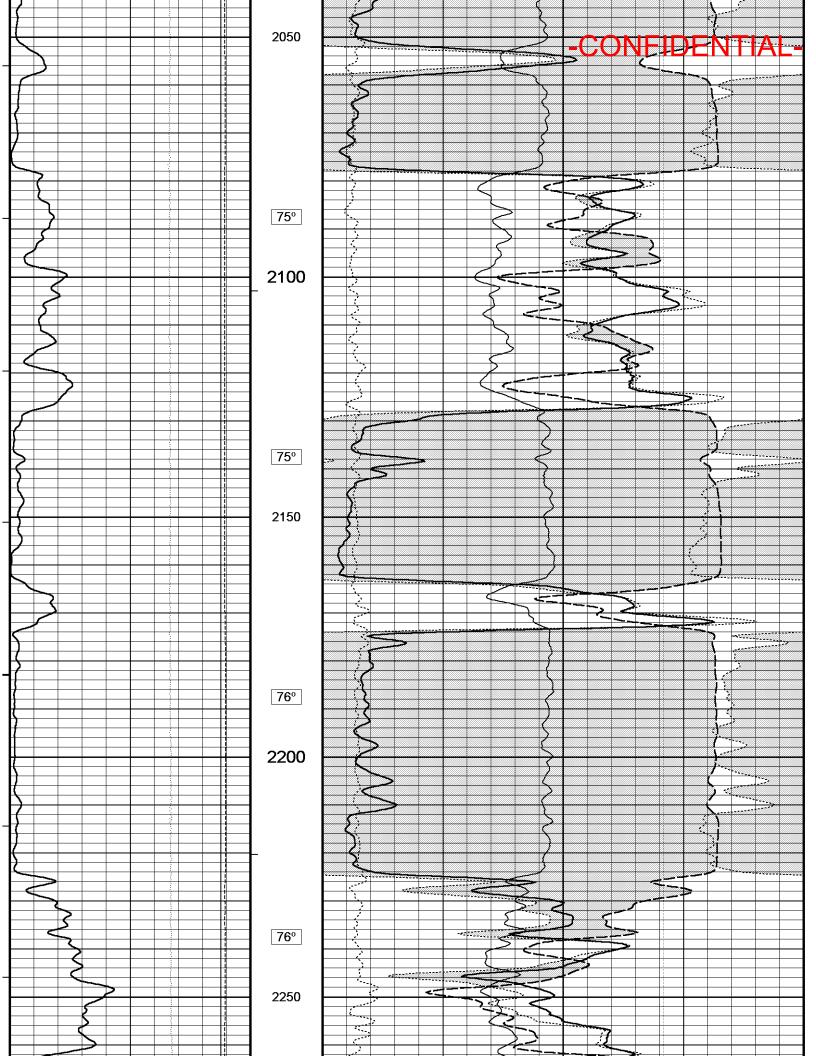

									5 I	nch N	lain l	_og														\mathbf{V}
Depth B	Based Dat	:a - N	Maxin	num	Sam	npling In	crement 10.0	Dcm											F	Plott	ed o	n 20	-AU(G-20	13 1	5:37
Filename: C:\Logs\Cargill Inc\Cargill 18\\Cargill Inc_C									argill 18_Run_5_Triple_3540548 Main Pass.dta								Recorded on 20-AUG-2013 13:39									
System	Versions:	: Lo	oggeo	d wit	:h 13	8.06.980	4 Plotted w	ith 1	3.06	.9804																
							Depth																			
						in		Limestone Neutron Por.																		
							Feet				_	_					ent					_				
<i>c</i>	Tin	ning	, Mar	'ks			_	30			2	20 				1 	0				() +—-				-10
	eve	егу б	60.0 s	sec																						
														Cor	mpe	nsat	ed D)ens	sity							
	Den	Cali	рег											g		is/cc										
			hes				Borehole Temp in	2			2.	25				2.	50				2.	75 				3
5		1	0 +			15	deg F																			
							Ĵ																			
									PE																	
							ни	barns/electron																		
E	Borehole (Corr	ecte	d Ga	amm	a	every	0			2.	50					;				7.	50				10
			PI				_10 cu ft																			
0		10	00			200	-																			
200		30	00			400								Bas	se D	ens	ity Po	огоз	sity							
							A		percent 30 20 10							•										
							Annular Integral	30			2	0 				ا 1	0				() }				-10
Bit Size						every																				
inches						10 cu ft																				
5 10 15														Mat	trix (dens	ity									
															g		is/cc									
								2			2.	25 I				2.	50				2.	75 				3
			пс		holo 1	Fension																				
					ounds	;				Der	nsity C	Corre	ectio	n												
0 3000									gran	ns/c	С		_													
3000 6000					Scale 1:240	-0.0	05		0.	20 			0	.45												
			•				1.240																			
			\vdash				12					-														
							12																			
							_																			
			\vdash																							
							1																			
		-					-					E										E				
			\geq				50																			
			3				-																			
		5					-																			
]																			

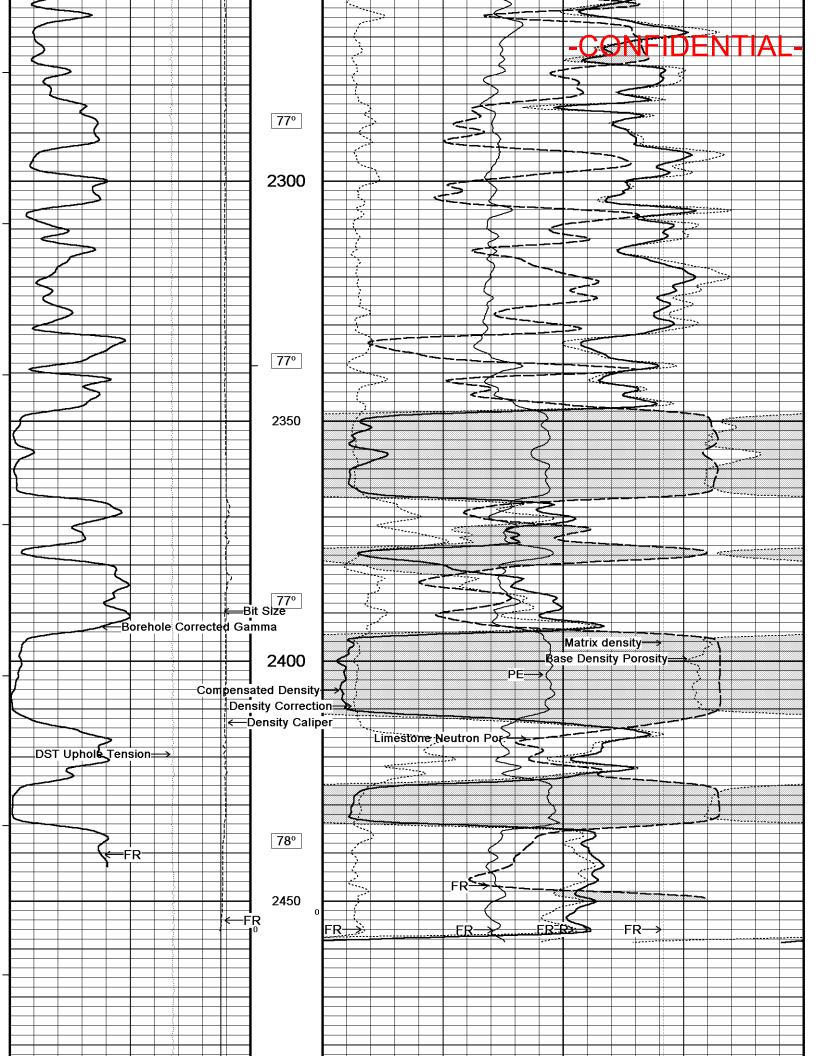


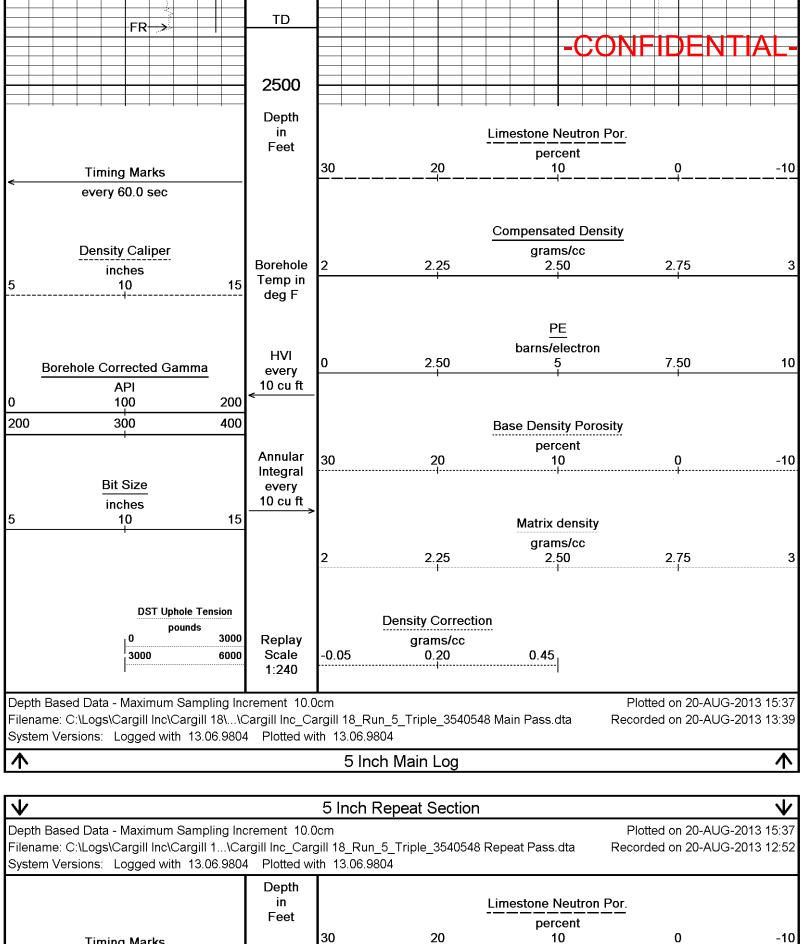


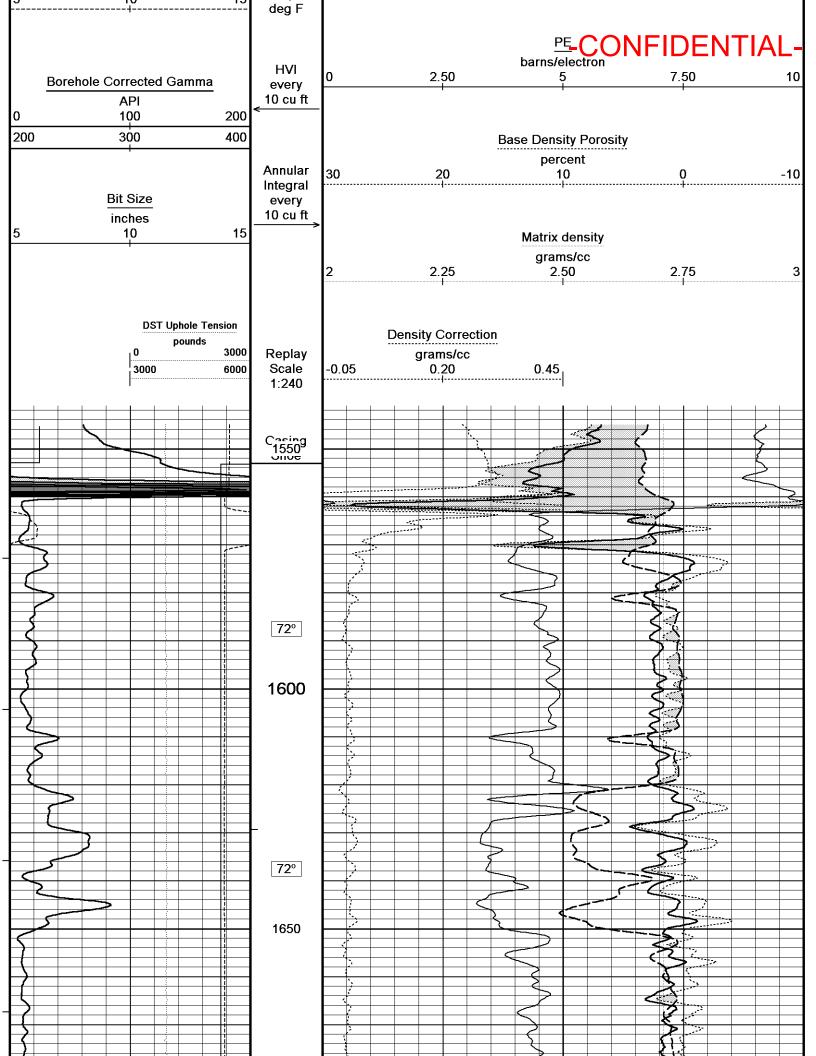


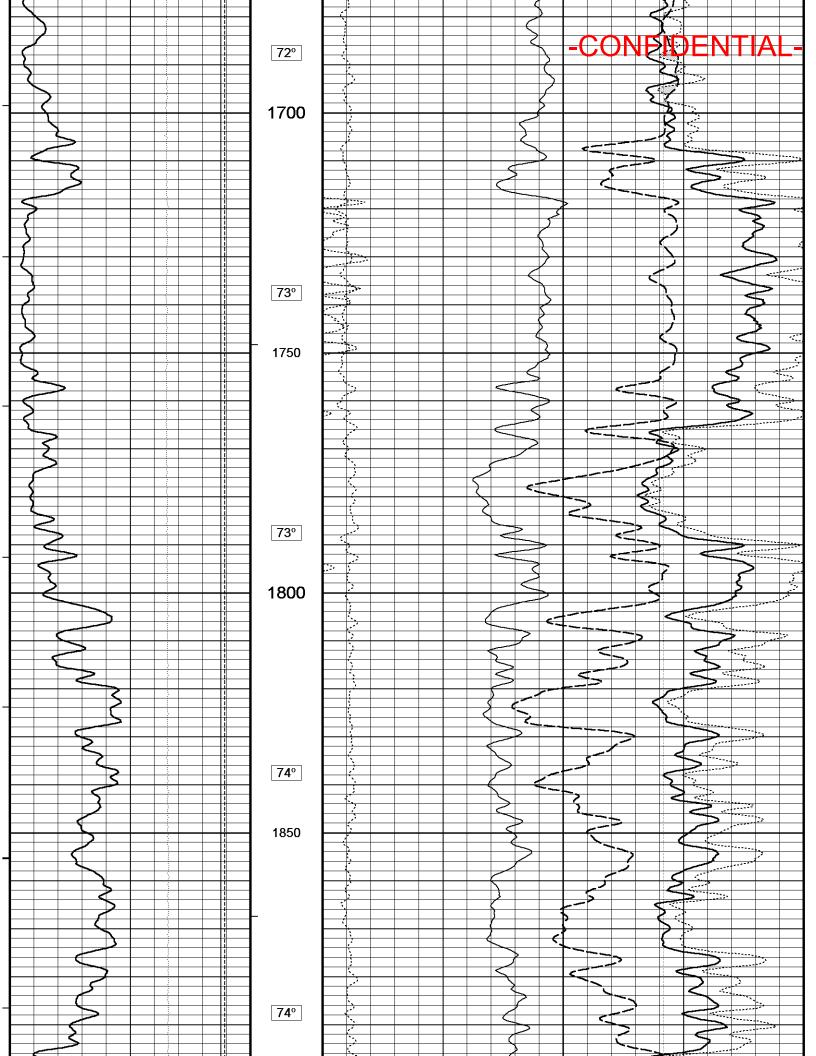


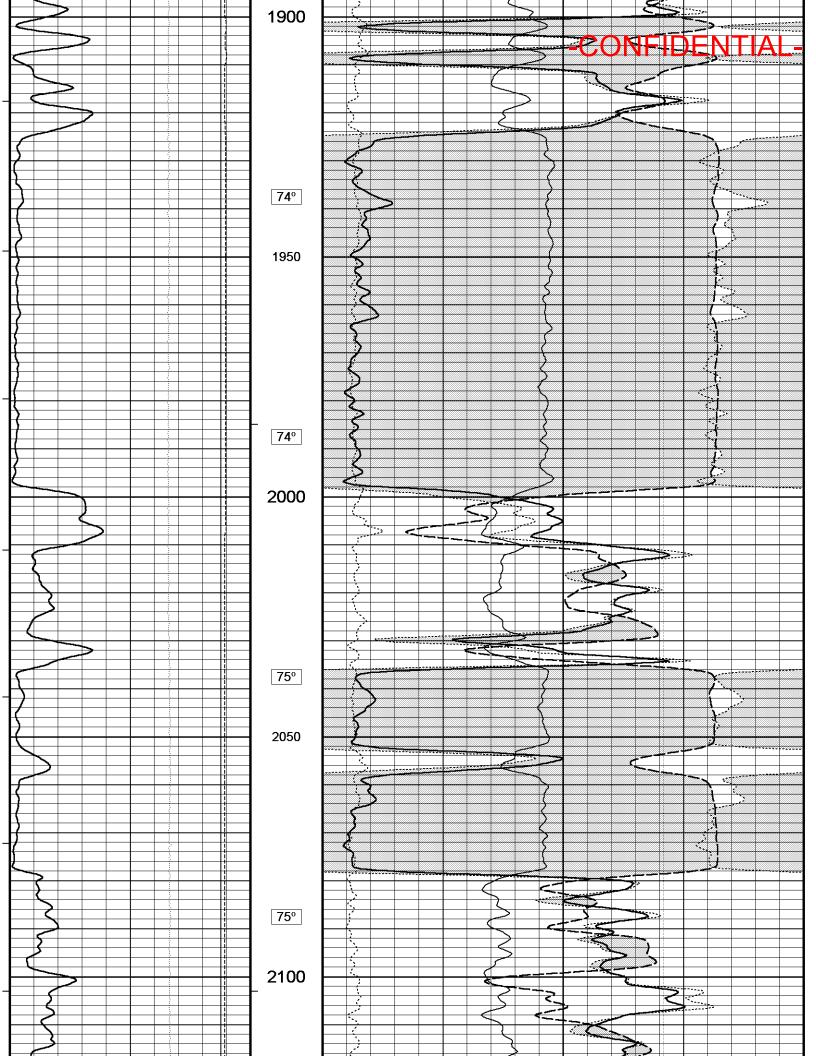


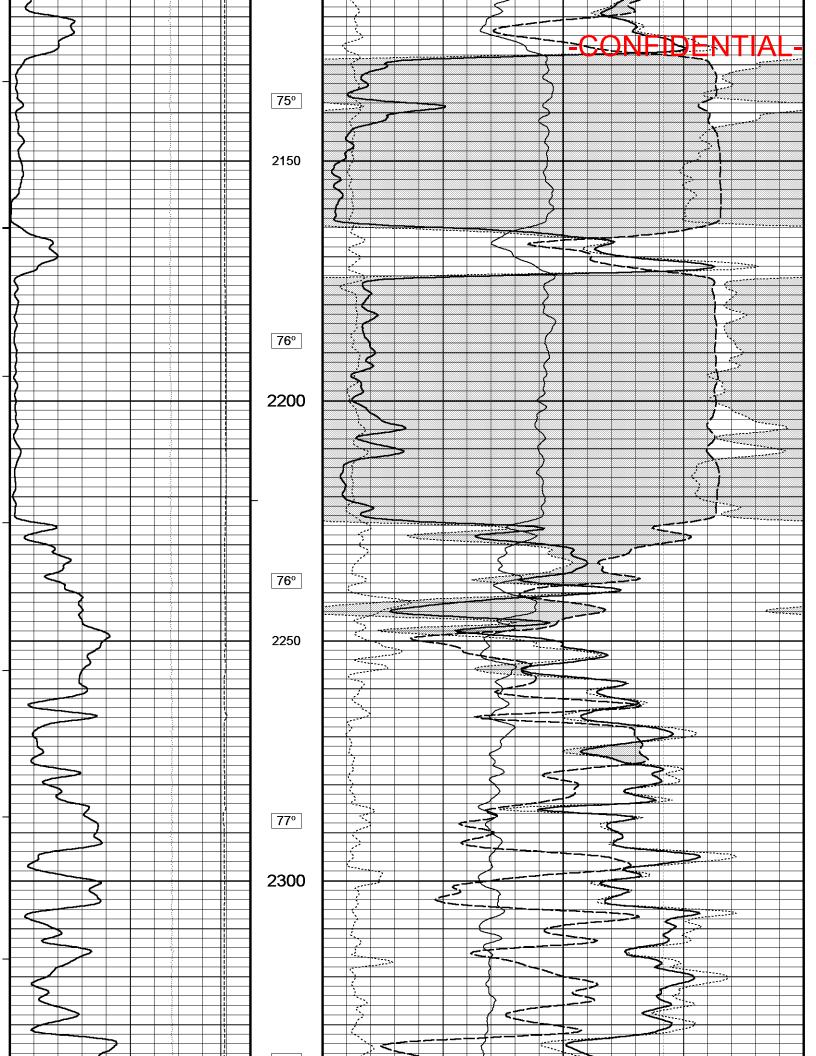


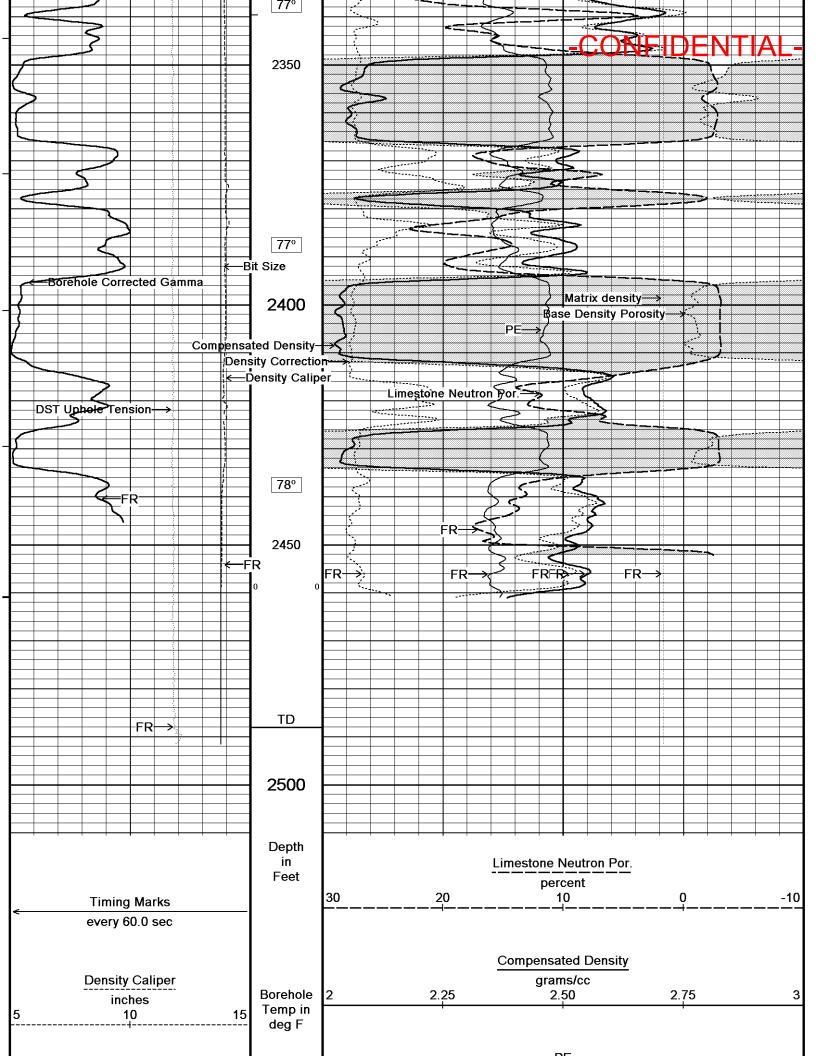


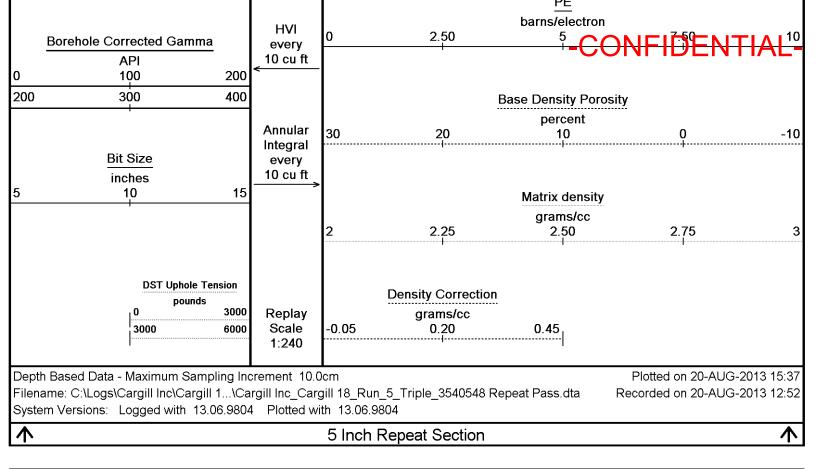


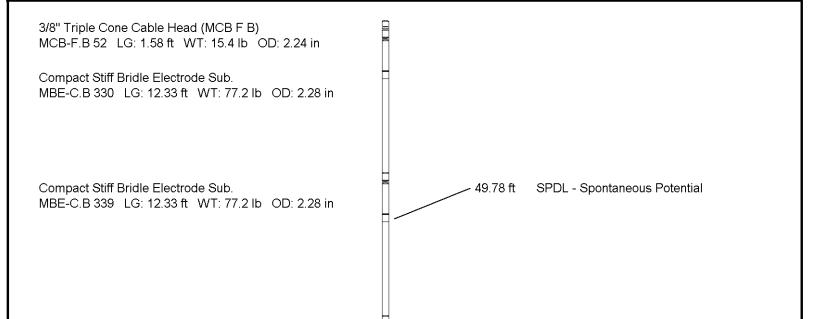


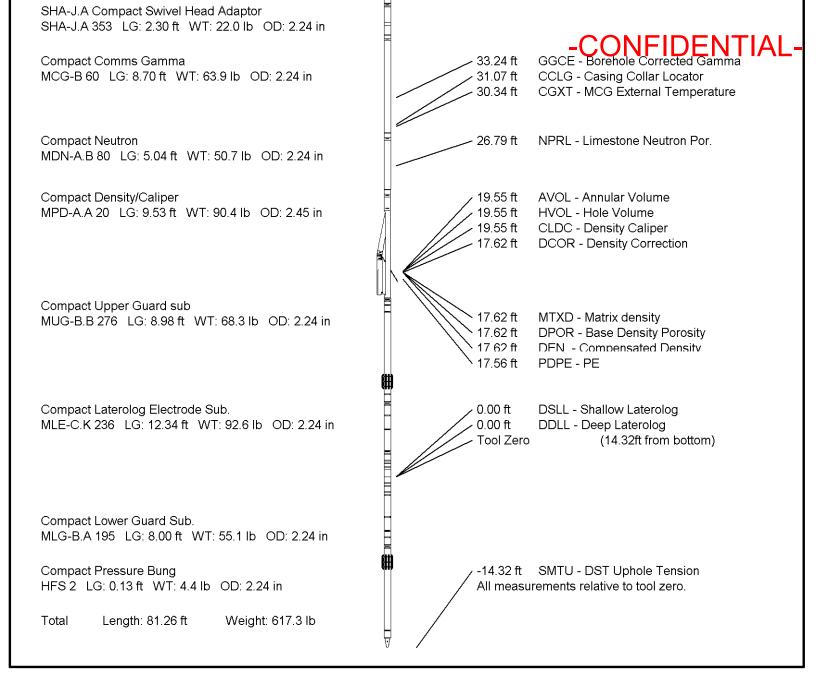



	Timing Marks			30	20	10	<u> </u>	
<	every 60.0 sec				·			
						Compensated Density	<u>/</u>	
	Density Caliper					grams/cc	-	
5	inches	15	Borehole Temp in	2	2.25	2.50	2.75	


3




	BEFORE SUR	VEY CALIBRATIO	N
C:\Logs\Cargill Ir	nc\Cargill 18\Run_5_Triple	\3540548\Cargill Inc_Ca	rgill 18_Run_5_Triple_3540548 Main Pass.dta
General Constants All 000			Last Edited on 20-AUG-2013,12:07
General Parameters			
Mud Resistivity	0.049	ohm-metres	
Mud Resistivity Temperature	78.000	degrees F	
Water Level	0.000	feet	
Borehole Fluid Processing	Wet Hole		
Hole/Annular Volume and Differe	ntial Caliper Parameters		
HVOL Method	Single Caliper		
HVOL Caliper 1	Density Caliper		
HVOL Caliper 2	N/A		
Annular Volume Diameter	3.750	inches	
Caliper for Differential Caliper	Density Caliper		
Rwa Parameters			
Porosity used	Base Density Porosity		
Resistivity used	Deep Laterolog		
RWA Constant A	0.610		
RWA Constant M	2.150		
SW/APOR Tool Source	0.000		
Gamma Calibration MCG-B 60			
	Maggurad	Calibrated (ADI)	Field Calibration on 08-AUG-2013 13:15
Peakaround	Measured 52	Calibrated (API) 36	
Background	2285	1575	
Calibrator (Gross)	2233	1575	
Calibrator (Net)	2233	1039	
Gamma Constants MCG-B 60			Last Edited on 20-AUG-2013,12:01
Gamma Calibrator Number	45		
Mud Density	1.05	gm/cc	
Caliper Source for Processing	Density Caliper	J	
Tool Position	Eccentred		
Concentration of KCI	_	kppm	


к миа туре K Mud Concentration	Chiori 0.	ae 00 %	
High Resolution Temperature Ca	libration MCG-B 60		Field Cambration of 24-APR-2013, 11:52
Lower Upper	Measured 60.00 101.00	Calibrated(Deg F) 60.00 100.00	
High Resolution Temperature Co	nstants MCG-B 60		Last Edited on 24-APR-2013,11:52
Pre-filter Length		11	
Neutron Calibration MDN-A.B 80)		Base Calibration on 03-AUG-2013,14:08 Field Check on 15-AUG-2013,17:46
Base Calibration	Measured Near Far 3504 108	Calibrated (cps) Near Far 3714 110	
Ratio	32.559	33.764	
Field Calibrator at Base		Calibrated (cps) 1457 2097	
Ratio		0.695	
Field Check		Calibrated (cps)	
Ratio		0.696	
Neutron Constants MDN-A.B 80			Last Edited on 20-AUG-2013,12:01
Neutron Source Id Neutron Jig Number Epithermal Neutron Caliper Source for Processing Stand-off Mud Density Limestone Sigma Sandstone Sigma Dolomite Sigma Formation Pressure Source Formation Pressure Temperature Source Temperature Mud Salinity Salinity Correction Formation Fluid Salinity Source Formation Fluid Salinity Barite Mud Correction Caliper Calibration MPD-A.A 20 Base Calibration Reading No 1	Density Calip 0. 1. 7. 4. 4. Constant Val 0. Constant Val 68. 0. Not Appli Constant Val 0. Not Appli 0. Not Appli	6N No Der 00 inches 00 gm/cc 10 cu 26 cu 70 cu ue 00 kpsi ue 00 degrees F 00 kppm ed ue 00 kppm ed 20 kppm ed 20 kppm ed	Base Calibration on 08-AUG-2013 14:51 Field Calibration on 08-AUG-2013 14:56
2 3 4 5 6 Field Calibration Mea	36145 45639 56054 0 N/A asured Caliper (in) 7.94	7.99 9.85 11.82 0.00 N/A Actual Caliper (in) 7.99	
Photo Density Calibration MPD-/ Density Calibration			Base Calibration on 08-AUG-2013 14:28 Field Check on 20-AUG-2013,12:00
	Measured Near Far 43016 15684 20273 2589	Calibrated (sdu) Near Far 53453 19407 25381 2580	

Field Check at Bas	e				
		1289.4	1483.2		
Field Check					-CONFIDENTIAL-
		1287.5	1480.1		
PE Calibration					
Base Calibration		Meas	ured	Calibrated	
	ws	WH	Ratio	Ratio	
Background	235	1141			
Reference 1	14607	42827	0.345	0.320	
Reference 2	5562	20118	0.281	0.274	
Field Check at Bas	e				
	234.7	1141.3			
Field Check					
	235.4	1137.5			
Density Constants MF	PD-A.A 20)			Last Edited on 20-AUG-2013,12:00
Density Osward Id			044450		
Density Source Id	L		21145B		
Nylon Calibrator Num			DNC-D-520		
Aluminium Calibrator	Number		DAC-D-520		
Density Shoe Profile	-		8 inch		
Caliper Source for Pr		L	ensity Caliper		
PE Correction to Den	sity		Not Applied		
Mud Density			1.05	gm/cc	
Mud Density Z/A Mult	iplier		1.11	_	
Mud Filtrate Density			1.00	gm/cc	
Dry Hole Mud Filtrate	Density		0.70	gm/cc	
DNCT			0.00	gm/cc	
CRCT			0.00	gm/cc	
Density Z/A Correctio	n		Hybrid		
Matrix Density (gm/co	3		Depth (ft)		
2.71	<i>'</i>				
0.00			0.00		
0.00			0.00		
0.00			0.00		
0.00			0.00		
0.00			0.00		
0.00			0.00		
0.00			0.00		
0.00					

C:\Logs\Cargill Inc\Cargill 18\Run_5_Triple\3540548\Cargill Inc_Cargill 18_Run_5_Triple_3540548 Main Pass.dta

COMPANY		Cargill, Inc.			
WELL		Cargill 18			
FIELD		Lansing			
PROVINCE/COU	NTY	Tompkins Cou	inty		
COUNTRY/STAT	Е	U.S.A. / New Y	′ork		
Elevation Kelly Bushing	752.16	feet	First Reading	2488.00	feet
Ele∨ation Drill Floor	752.16	feet	Depth Driller	2486.00	feet
Elevation Ground Level	748.16	feet	Depth Logger	2488.00	feet
Weather	ford	Photo Densi Compensate Gamma Ray	ed Neutron		

	AcGrath	Patrick McGrath	Witnessed By
	lureldin	Nibras Nureldin	Recorded By
	Muncy	13041	Equipment / Base
	deg F	78.00	Max Recorded Temp
		4 Hrs	Time Since Circulation
	78.0 ohm-m	0.049 @	Rm @ BHT
	Calc.	Calc.	Source Rmf / Rmc
	78.0 ohm-m	0.073 @ 78.0	Rmc @ Measured Temp
	78.0 ohm-m		Rmf @ Measured Temp
	78.0 ohm-m	0.049 @ 78.0	Rm @ Measured Temp
	Φ	Flow Line	Sample Source
			PH / Fluid Loss
	lb/USg 27.00 sec/qt	8.60	Density / Viscosity
		Brine	Hole Fluid Type
	inches	3.780	Bit Size
	feet	1553.00	Casing Logger
	feet	1554.00	Casing Driller
	feet	30.00	Last Reading
	feet	2488.00	First Reading
	feet	2488.00	Depth Logger
	feet	2486.00	Depth Driller
		3540548	Service Order
		Five	Run Number
	2013	20-Aug-2013	Date
		GLL	Drilling Measured From GLL
DF 752.16			Log Measured From GL
vations:	/ation 748.16 feet	nd Level, Elev	Permanent Datum Ground Level, Elevation 748.16 feet
	Cross Dipole		API Number
Caliper	Compensated Neutron		
Data Pack	Photo Density		
	Other Services	RGE	SEC TWP
FIELD PRINT	1=784.16 WEL	Z/Elevation=784.16	IMBER
	X=820507.58. Y=937023.59	(=820507	LOCATION
	ew York	U.S.A. / New York	COUNTE VISTATE
	County	Tompkins County	CE/COUNTY .
		Lansing	
		Cargill 18	_
		Cargill, Inc.	
Gamma Rav	Gan		
Dual Laterolog	Dual		A

		BOREHOLE RECO	RD		Last Edited: 20-AUG-2013 14:46	
	Bit Size	Depth From		Depth To		
	inches	feet		feet		
	8.750	28.50		580.00		
	6.250	580.00		1553.00		
	3.780	1553.00		2488.00		
		CASING RECOR	D			
Туре	Size	Depth From	Shoe	e Depth	Weight	
	inches			feet pounds/ft		
	10.750	0.00		28.00	42.00	
	7.000	0.00	į	580.00	17.00	
	4.500	0.00	1:	553.00	9.50	

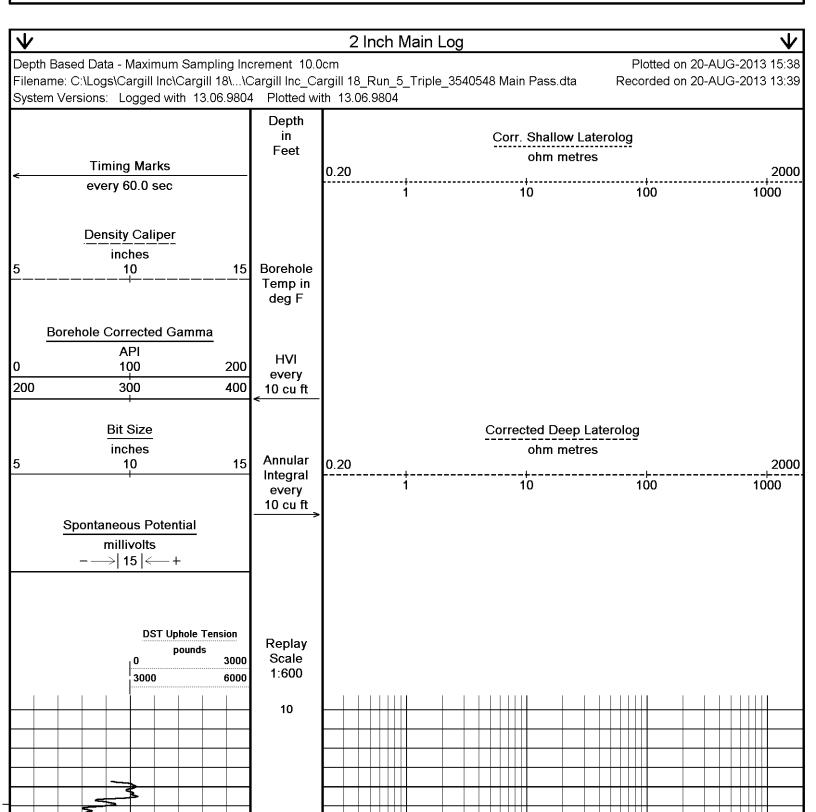
REMARKS

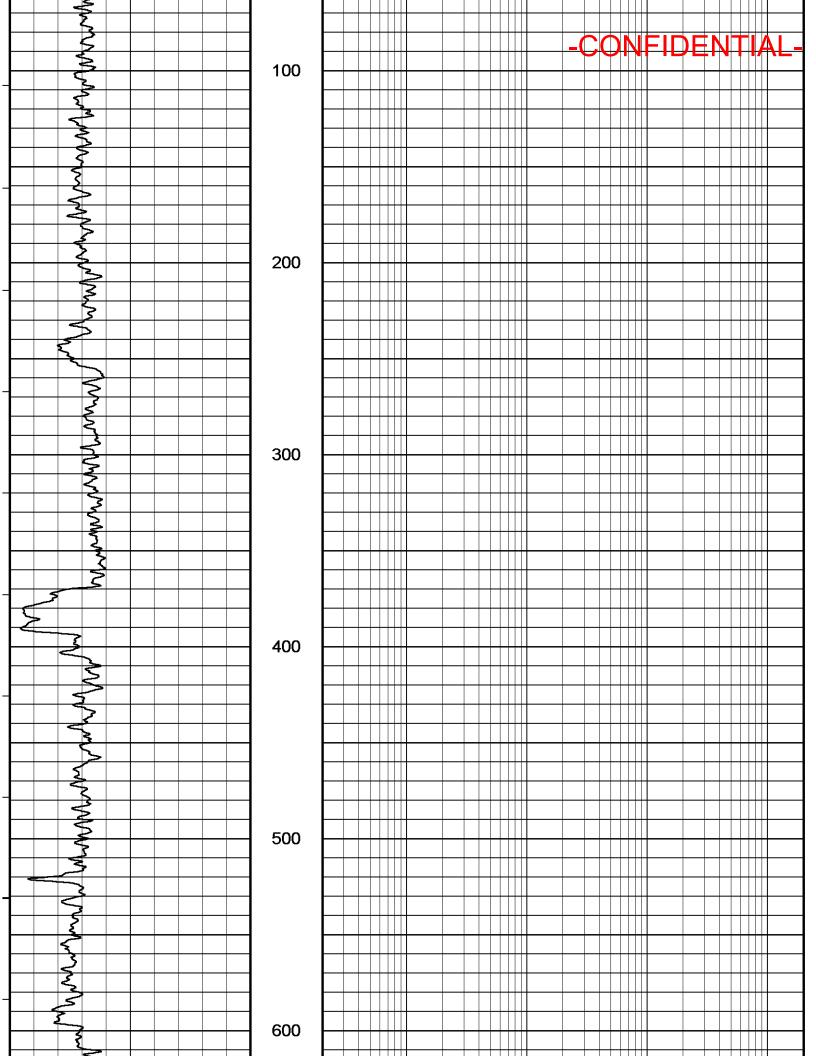
Software: WLS 13.06.9804

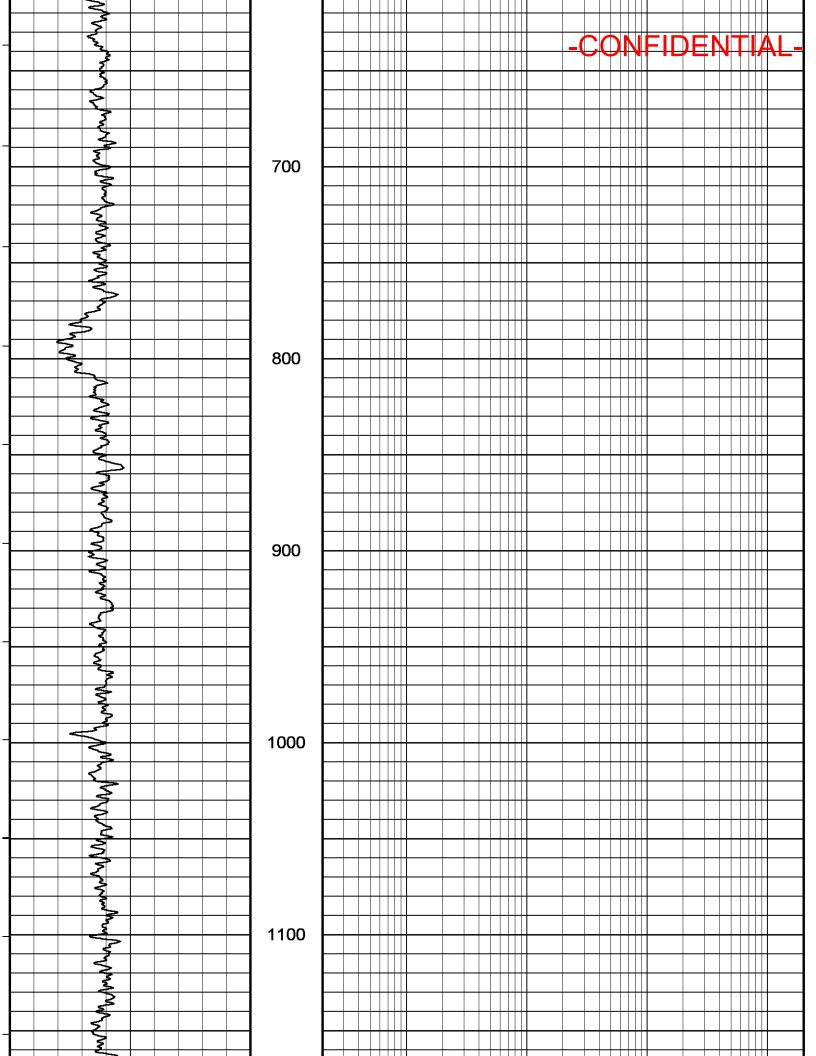
Tools Run 1: MBE, MBE, SHA, MCG, MDN, MPD, MFE, MUG, MDL, MLG, BHT

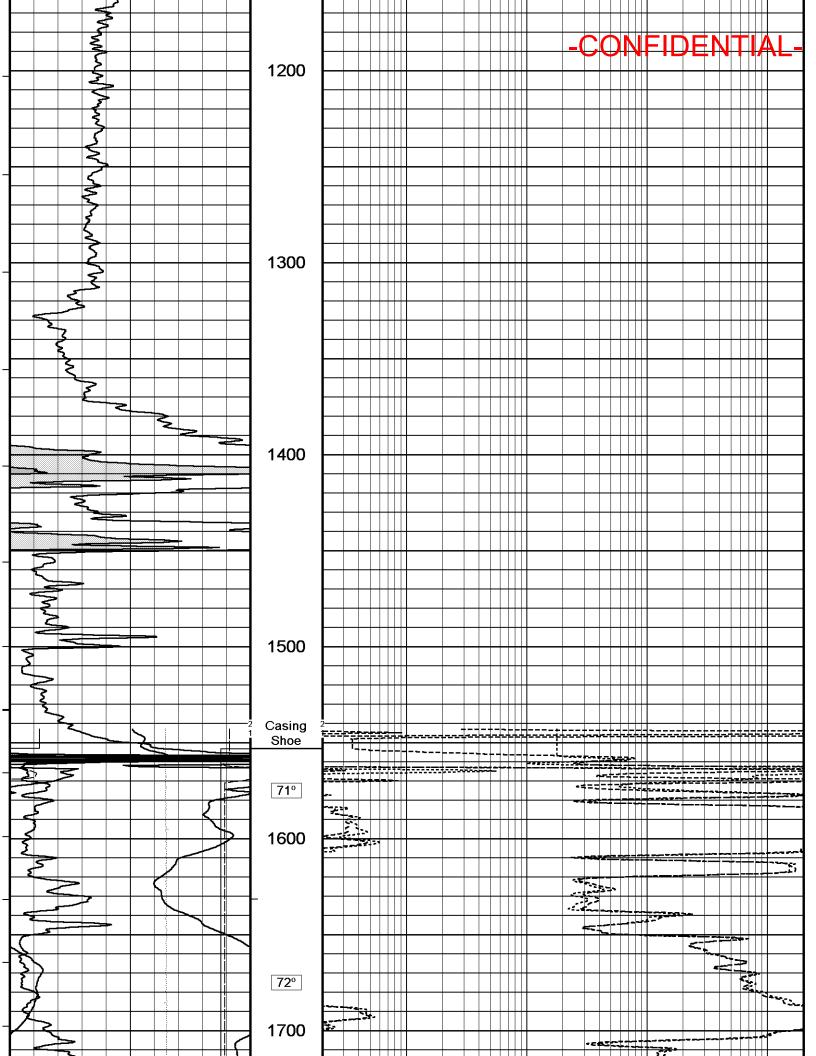
Hardware:

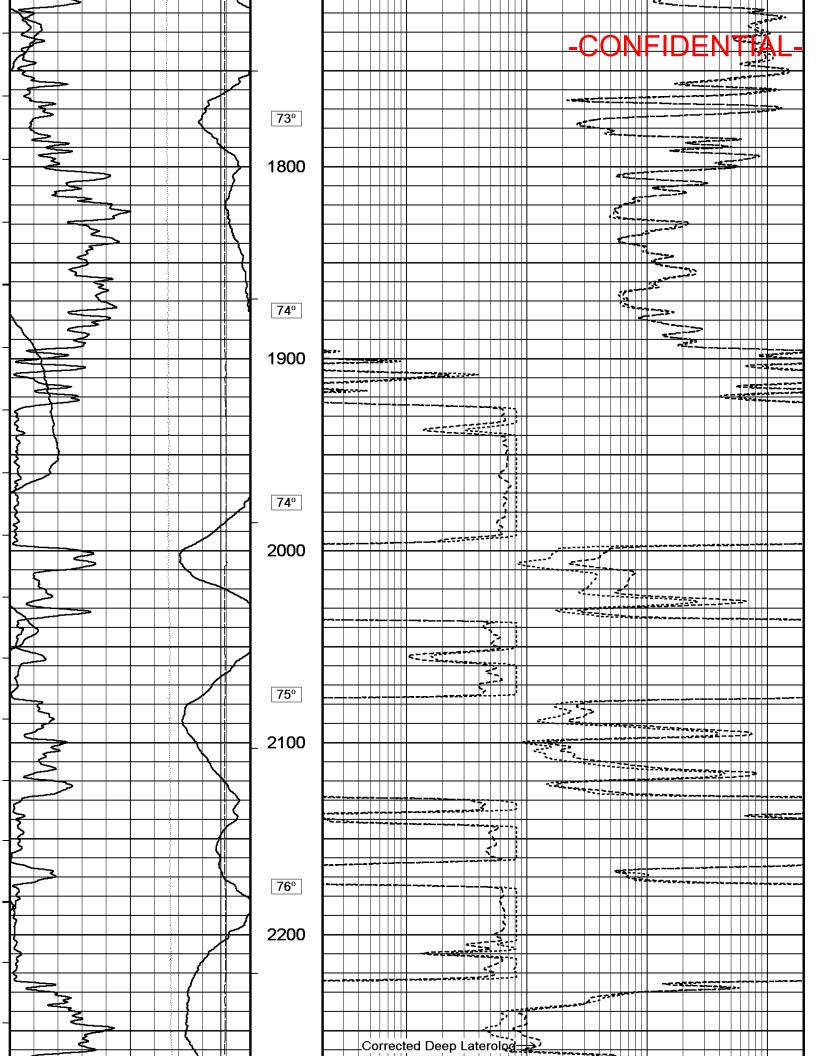
MDL - Two-1 Inch Standoffs

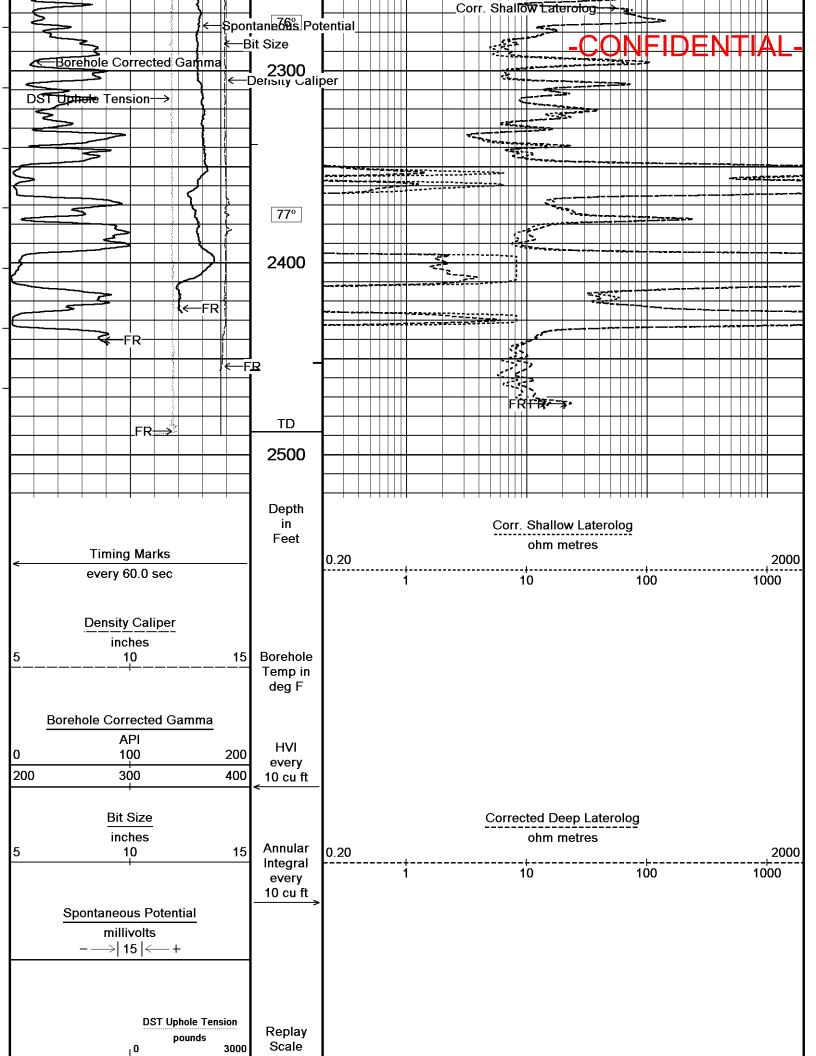

Density Matrix was ran on 2.71 gg/cc

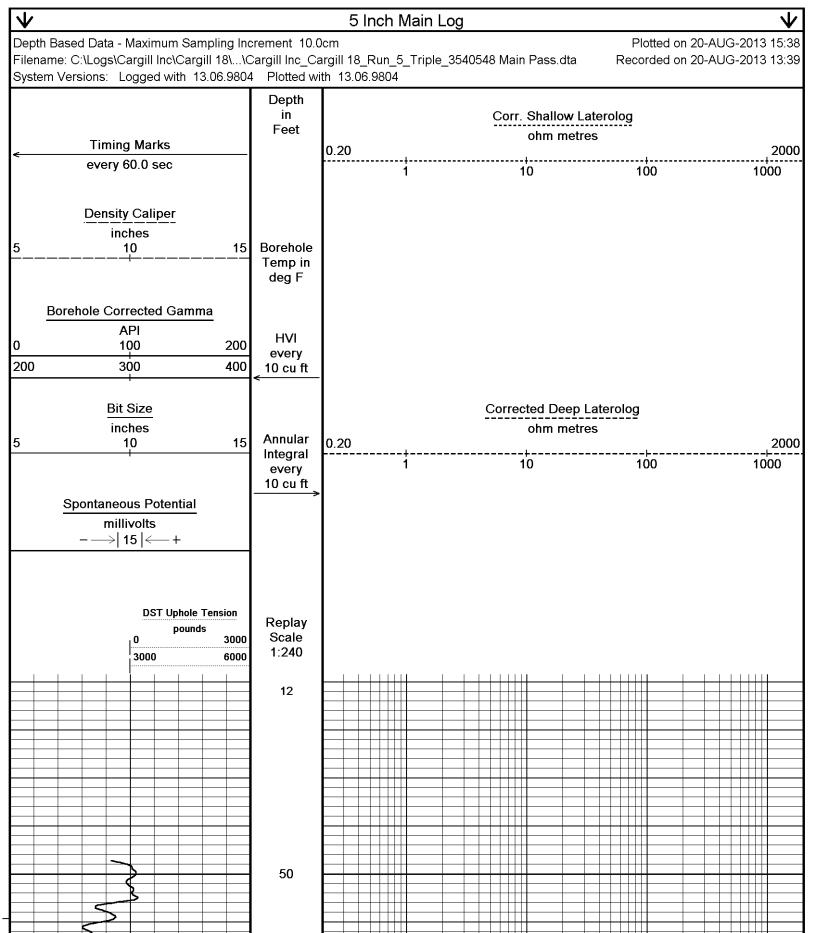

Crew: Nibras Nureldin Shane Glowcheski Gamma ray spikes up at the bottom of the borehole because the gamma ray sub ran below the sources 3.75 inch casing was used to calculate annular hole volumes Gamma ray was recorded to ground level

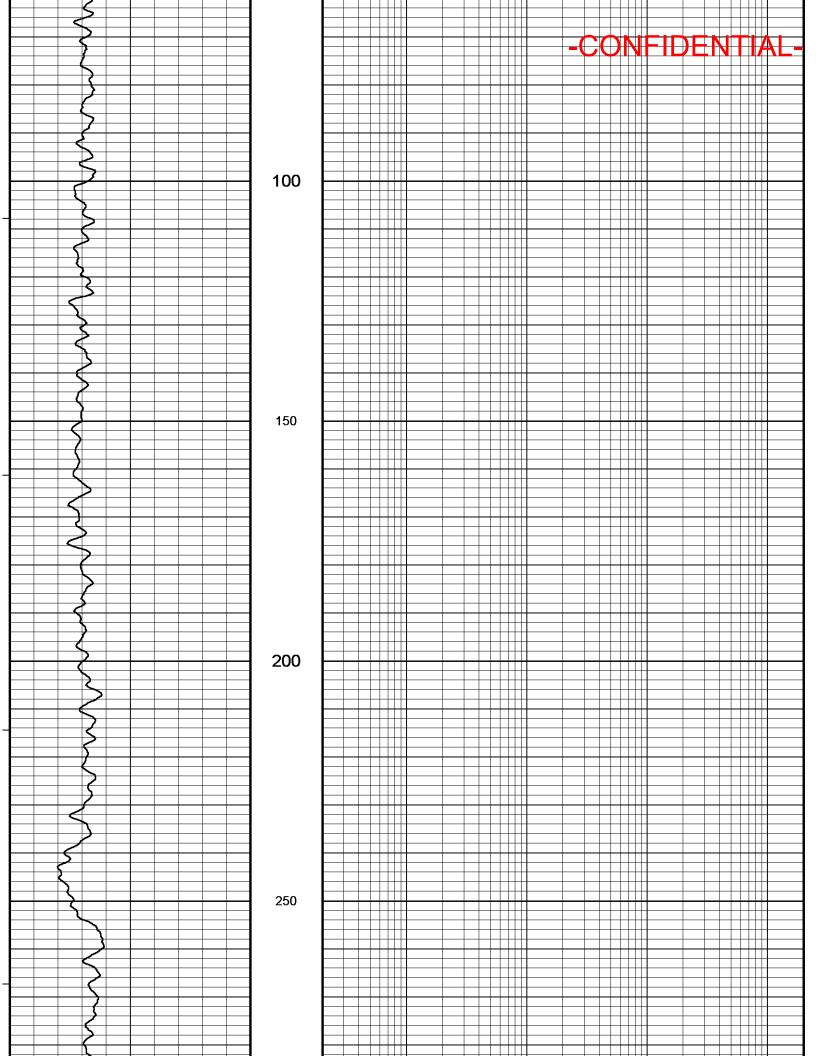

No Mud report was found on location. 100% Brine was added to the well that had 10% brine water in the well.

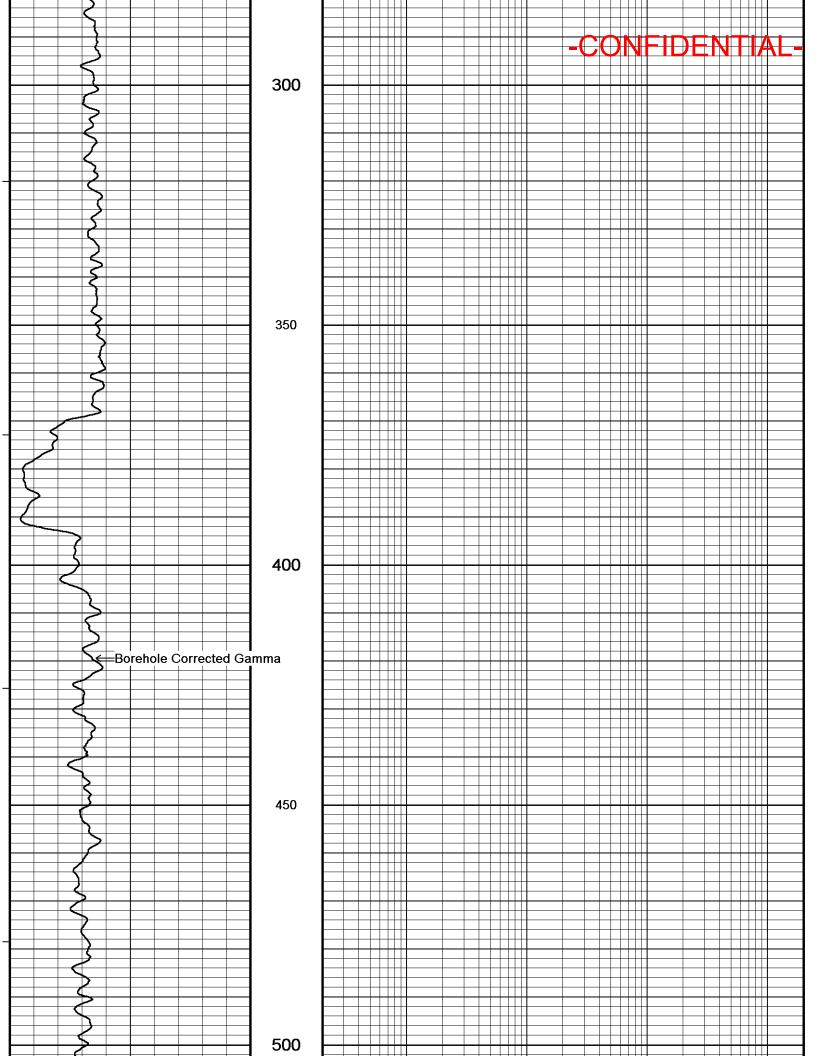

Mud Density is 9.5 lbs/USg

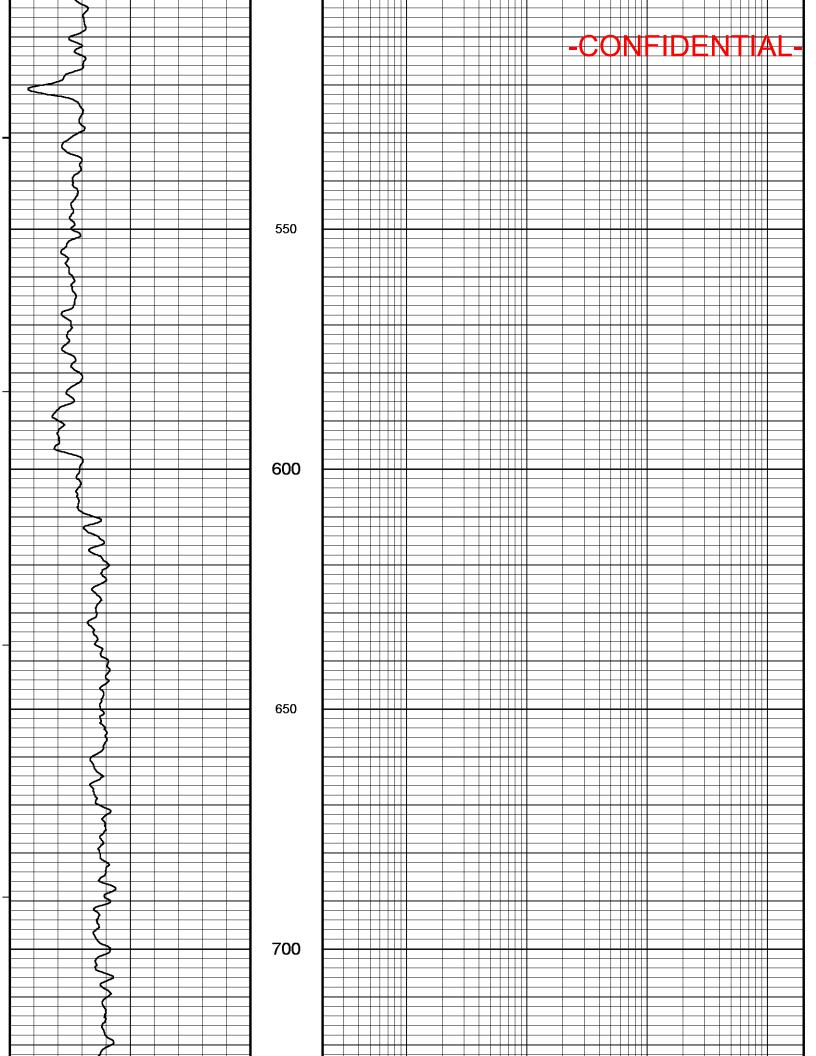

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not, guarantee the accuracy or correctness of any interpretations, and we shall not, except in the case of gross or wilful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions in our price schedule.

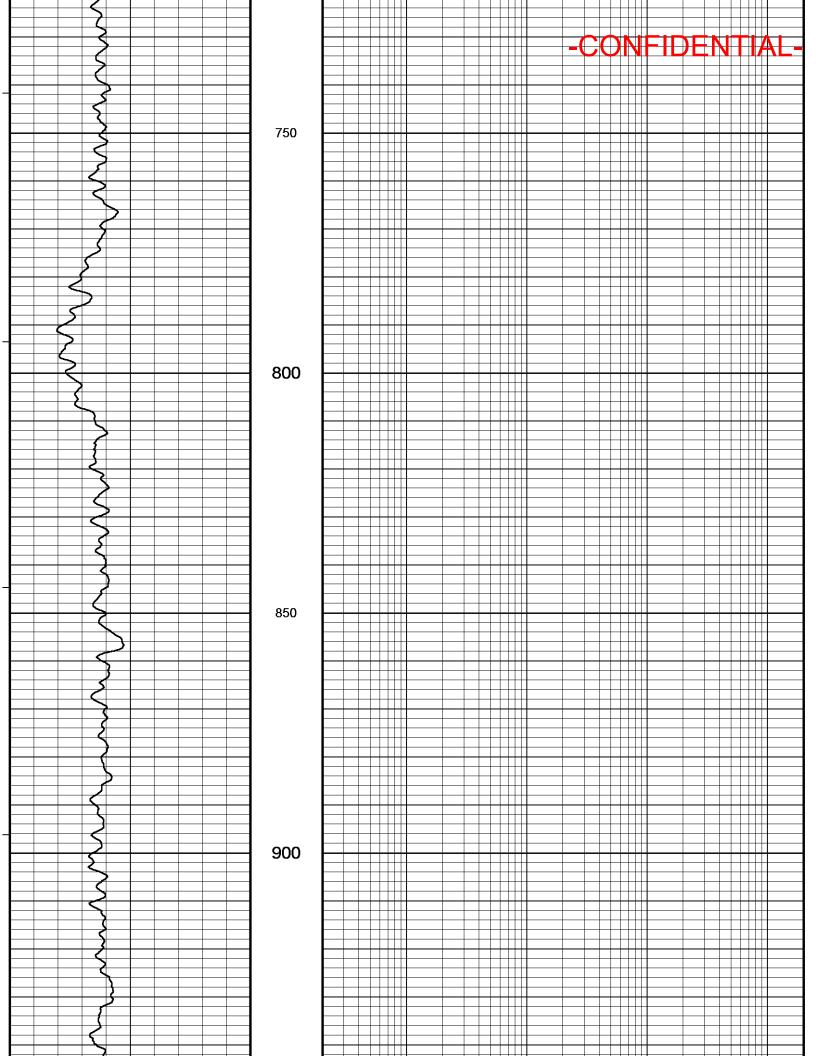


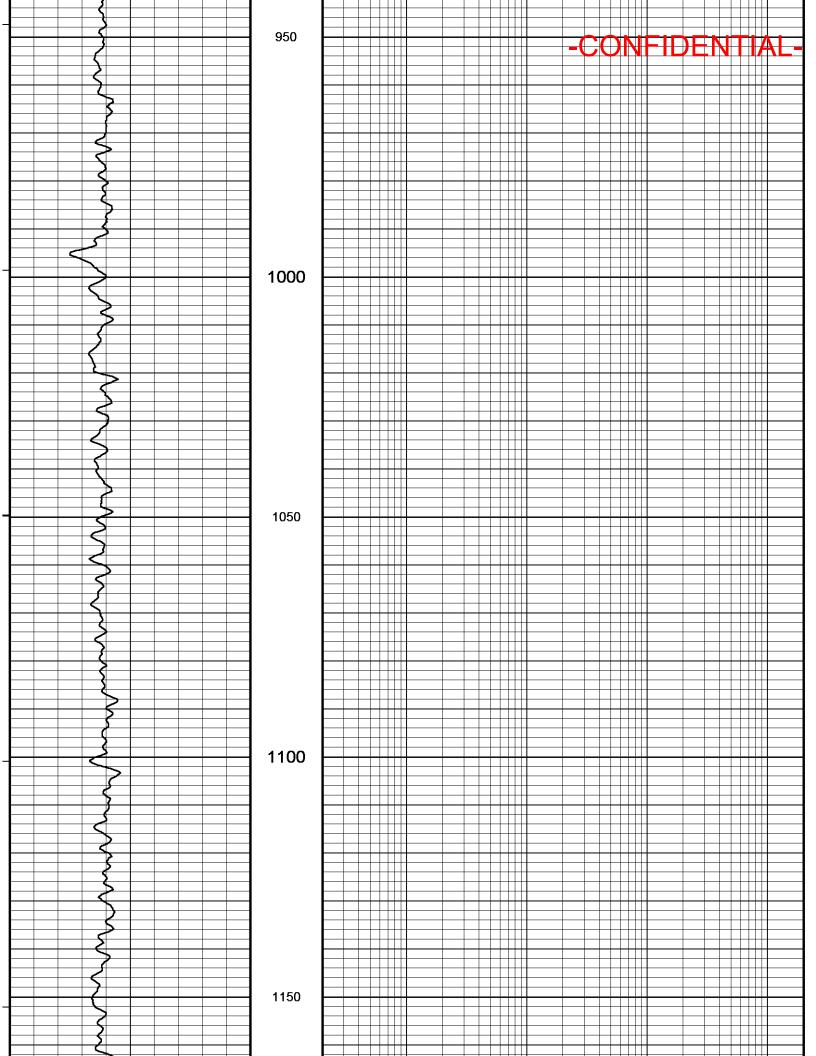


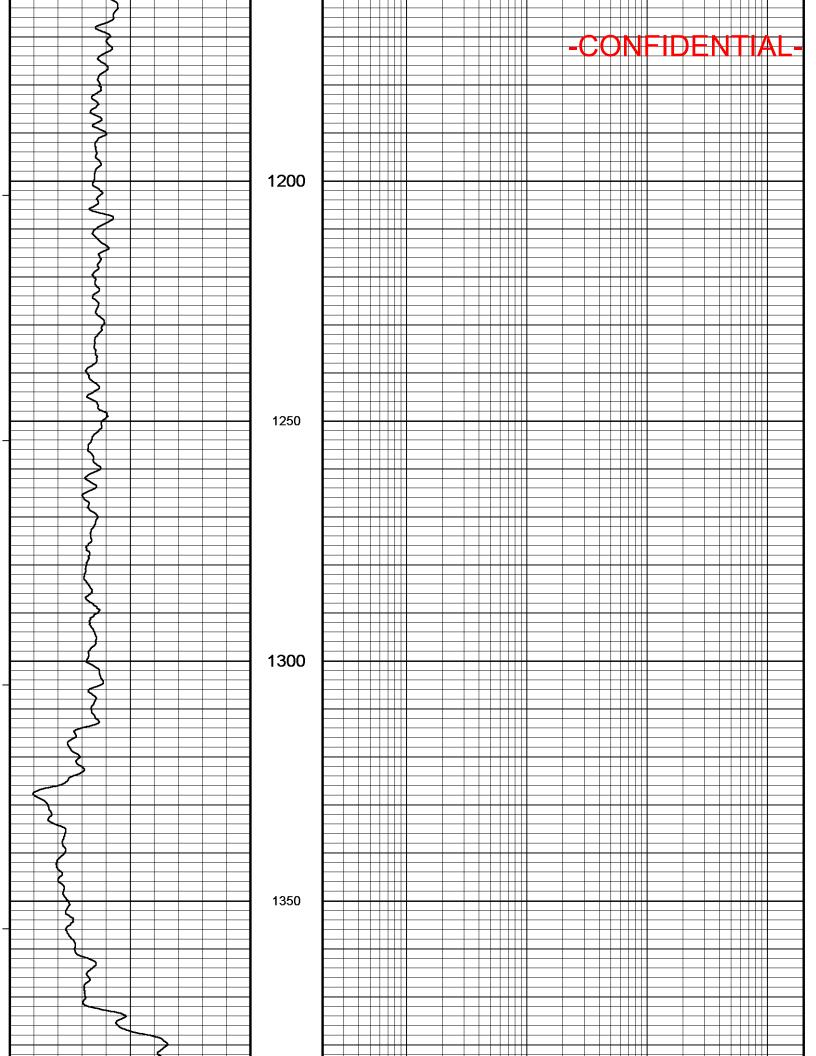


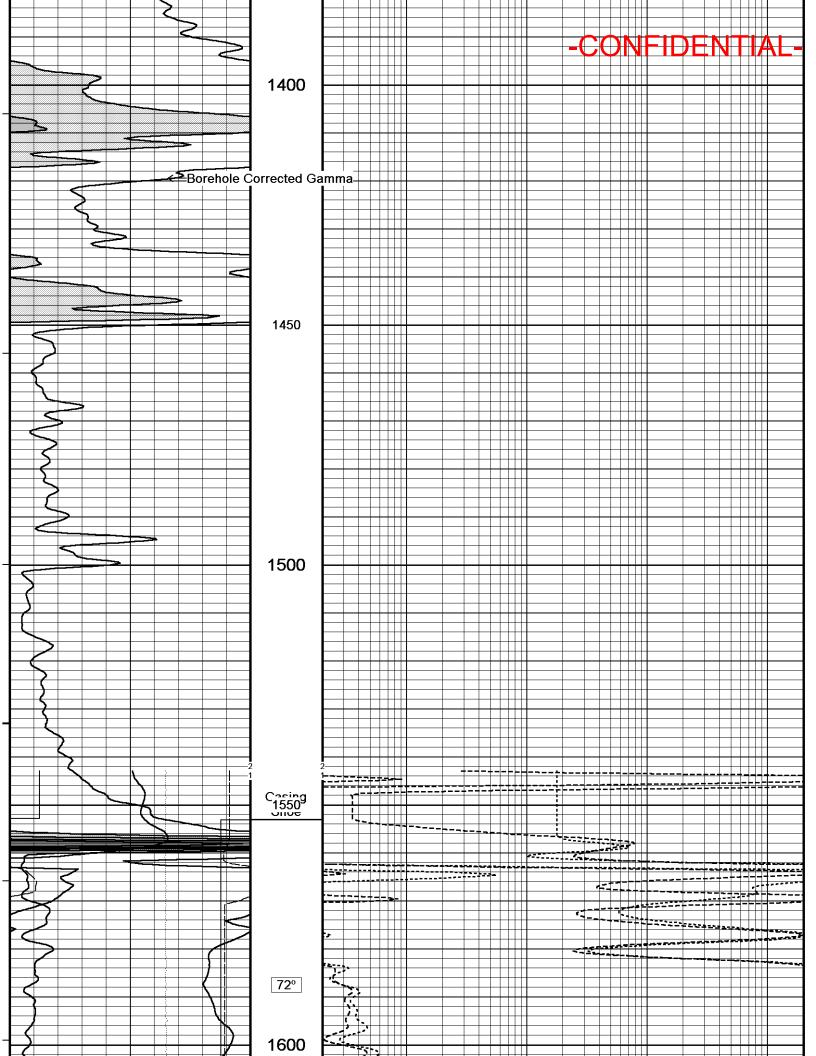


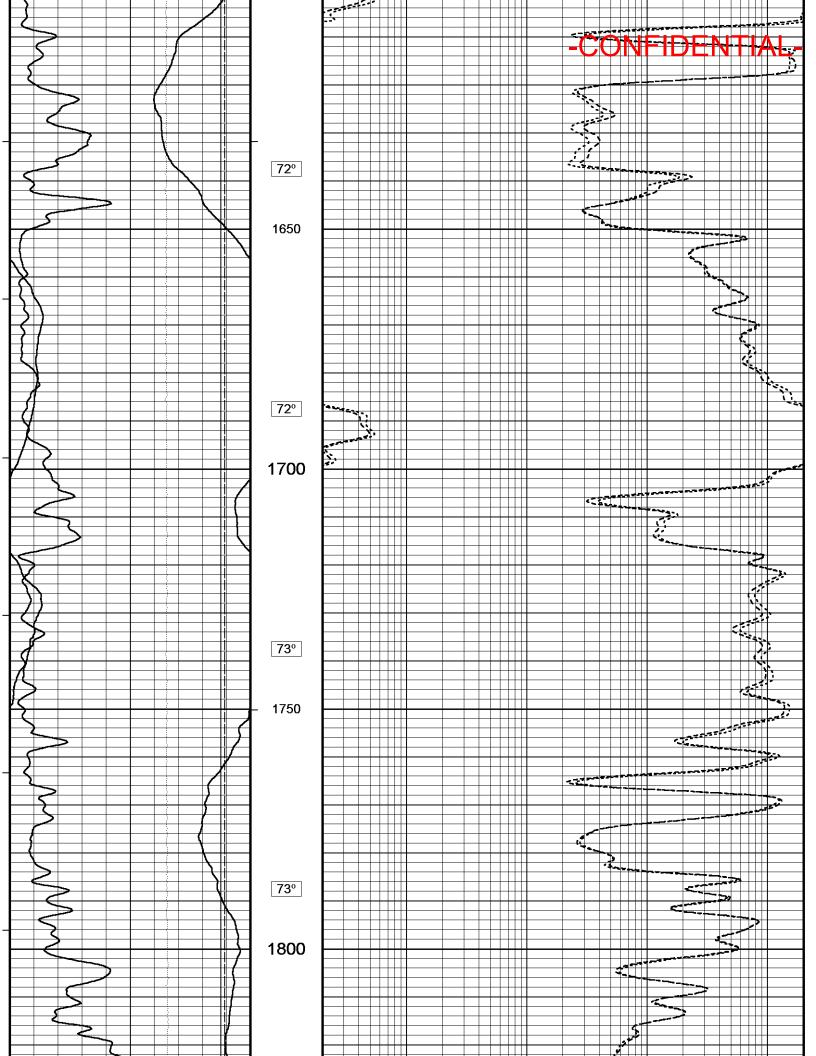


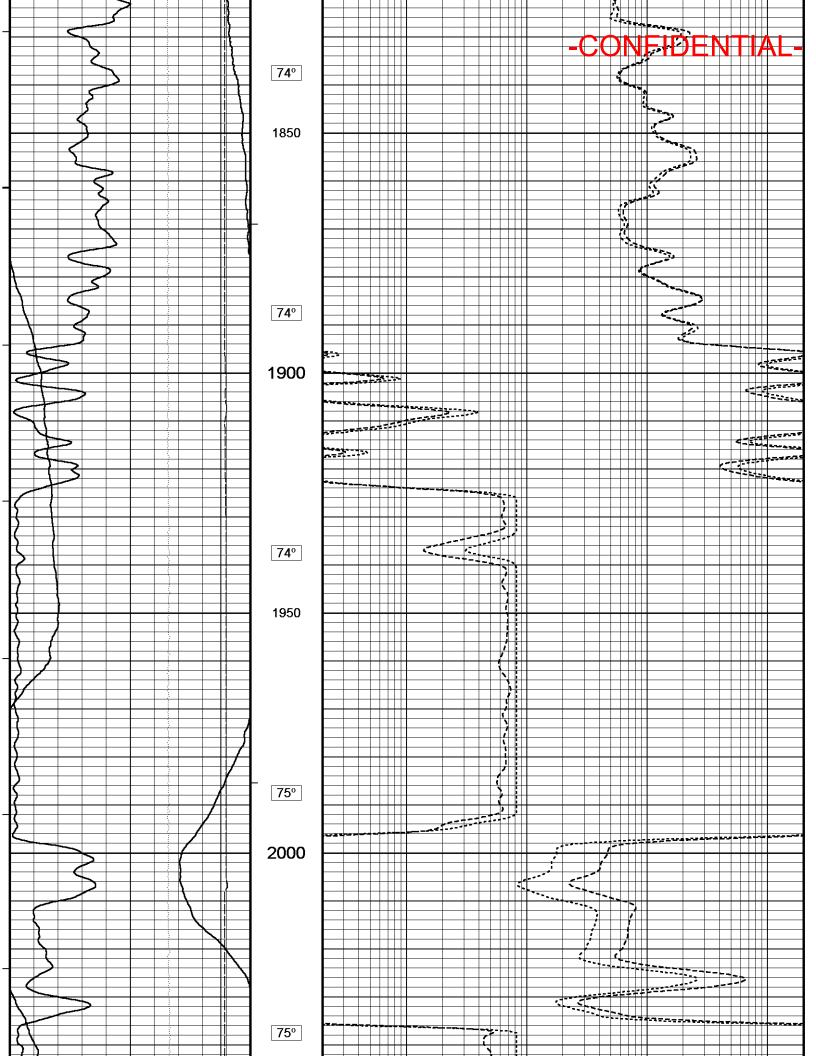

3000	6000	1:600		
Depth Based Data - Maximum Samp Filename: C:\Logs\Cargill Inc\Cargill System Versions: Logged with 13.			cm Irgill 18_Run_5_Triple_3540548 Main Pass.dta CORecorded on 20 AUG-20 th 13.06.9804	1315:38 1315:39
$\mathbf{\Lambda}$			2 Inch Main Log	$\mathbf{\Lambda}$

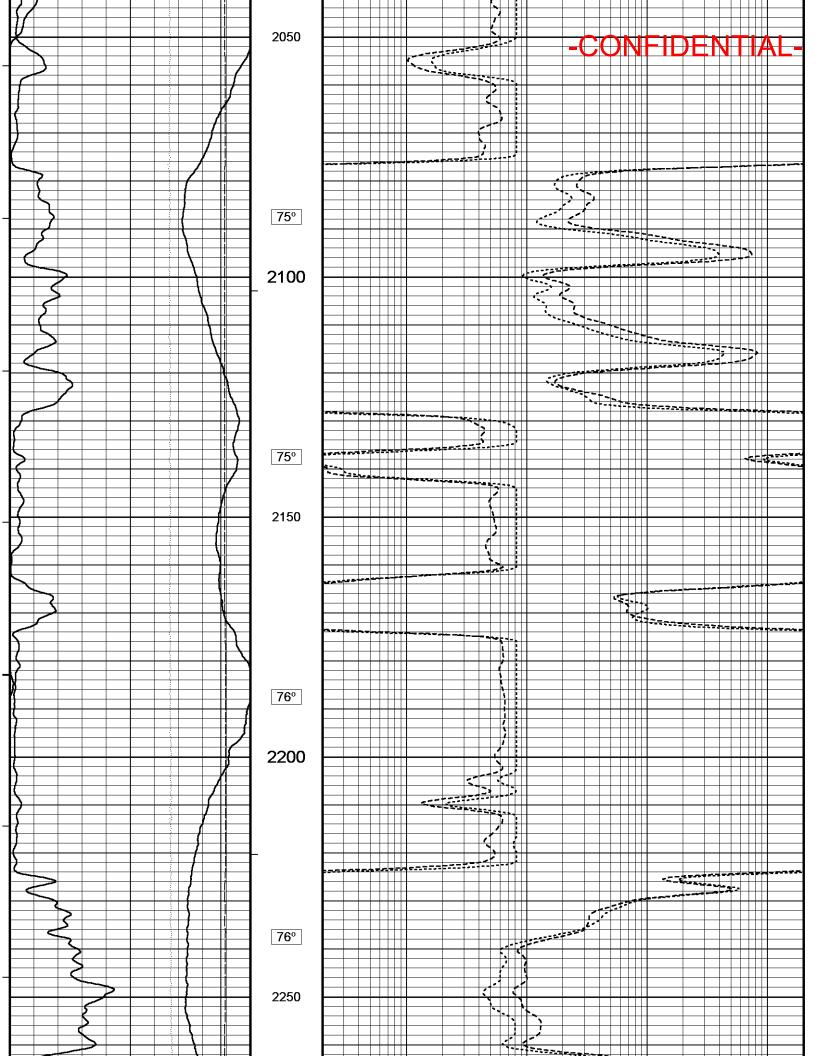


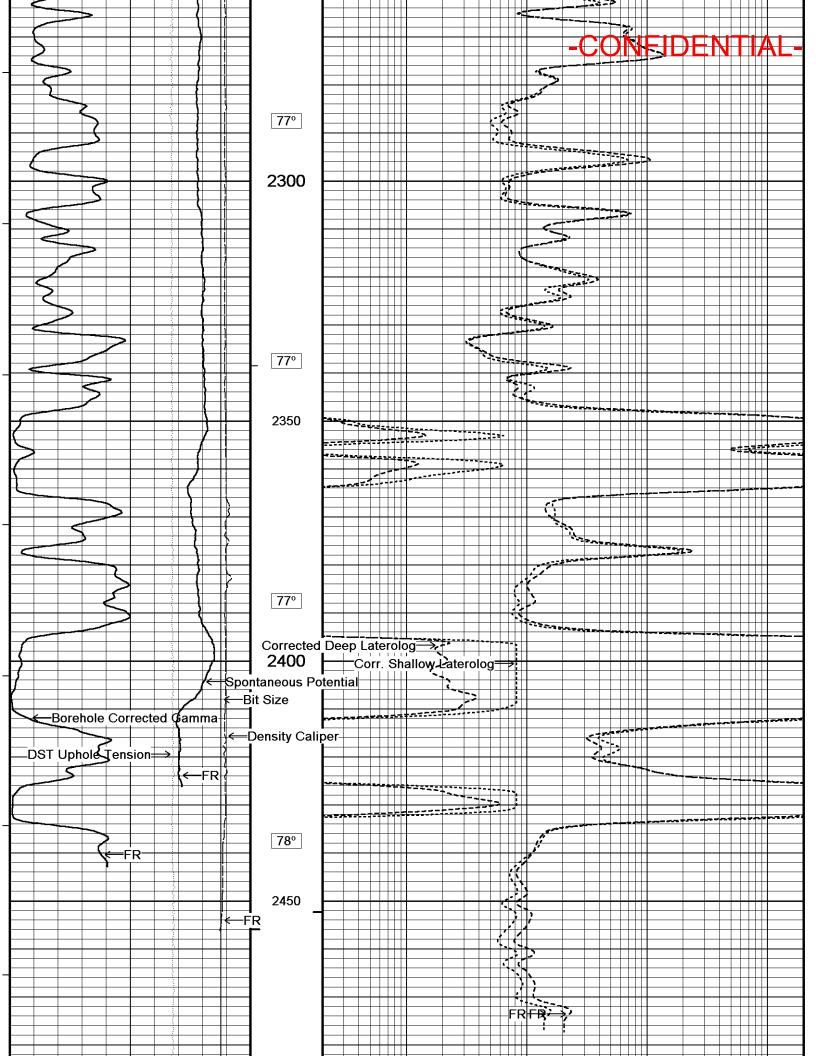


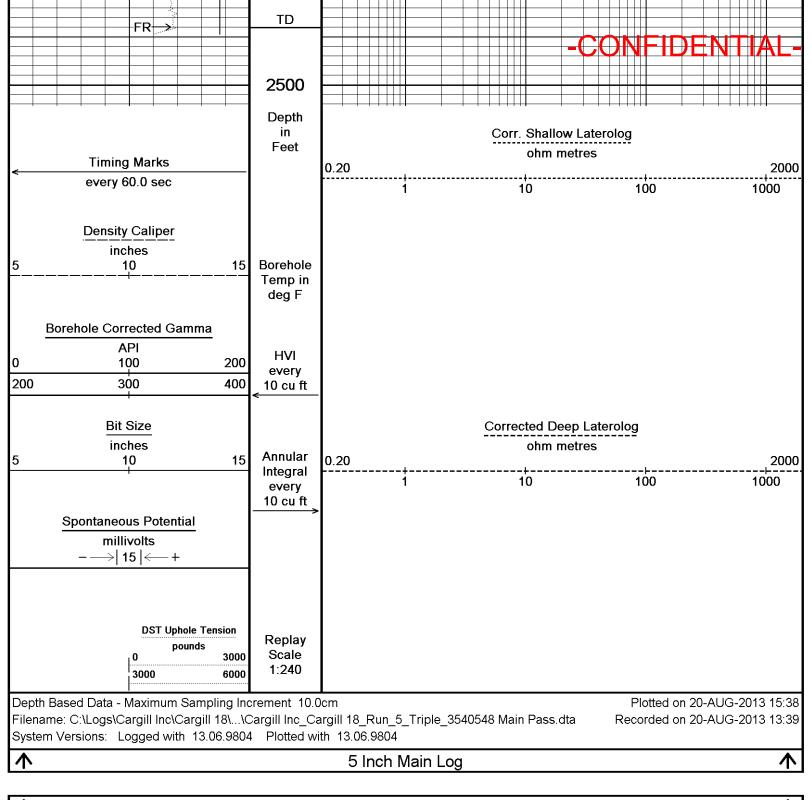


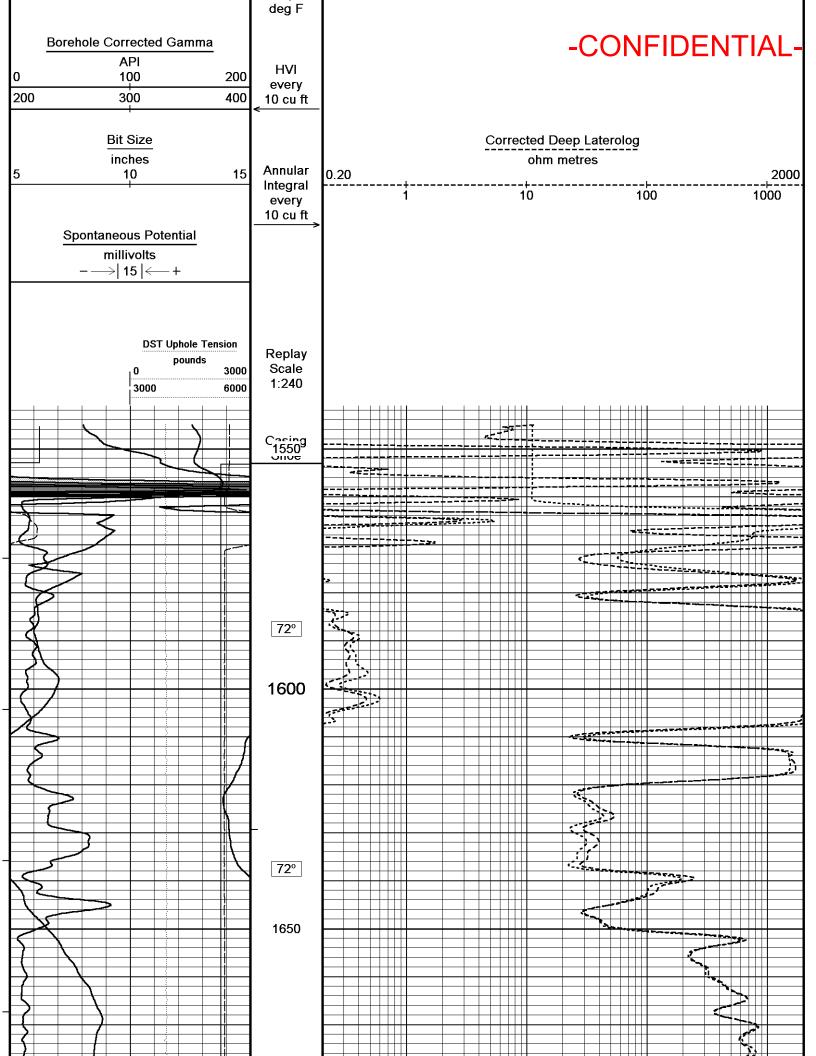


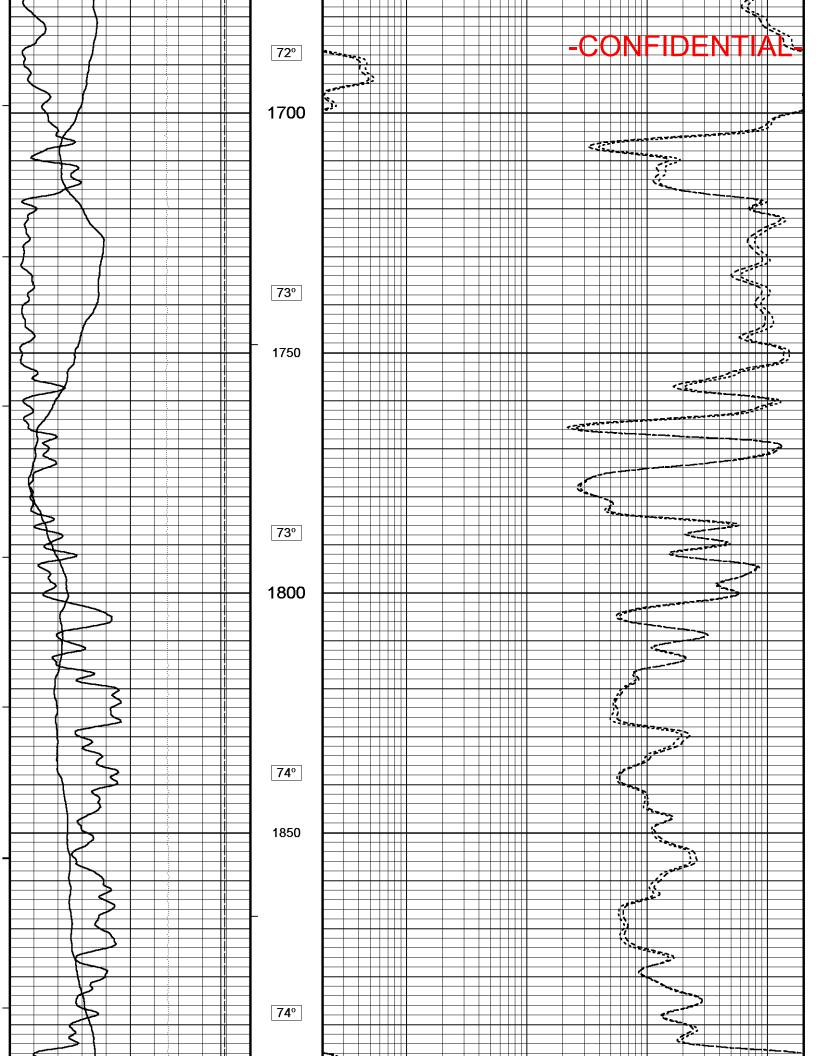


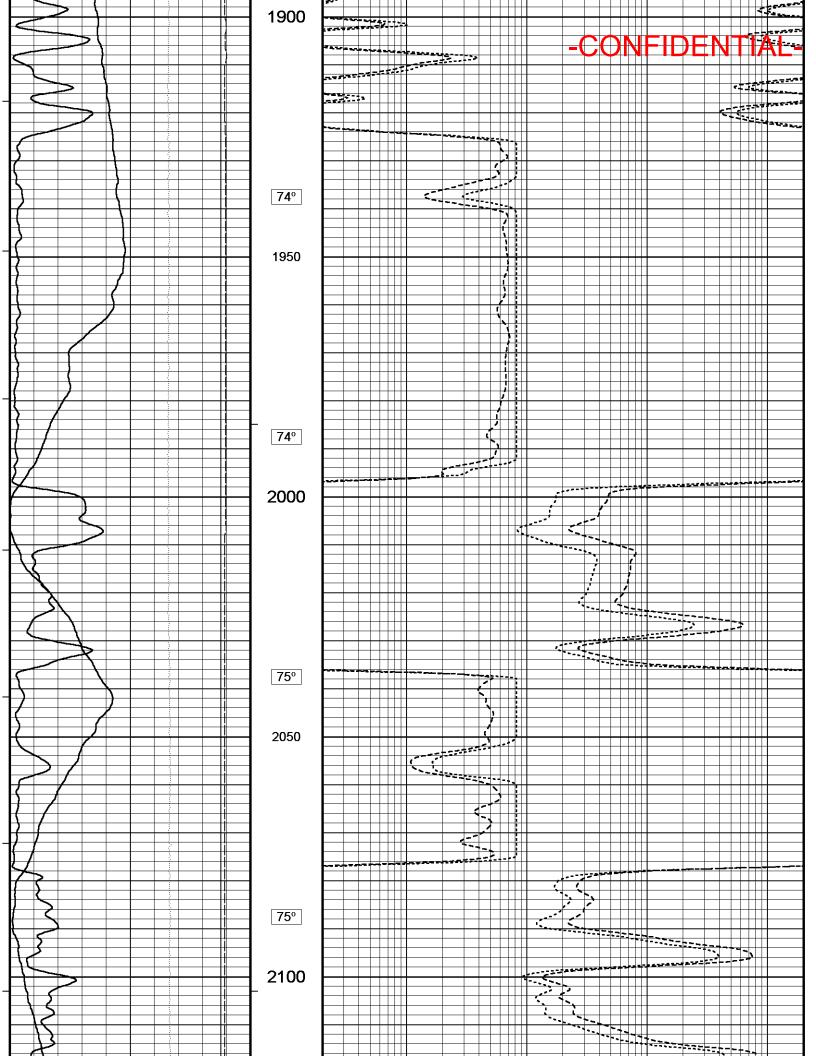


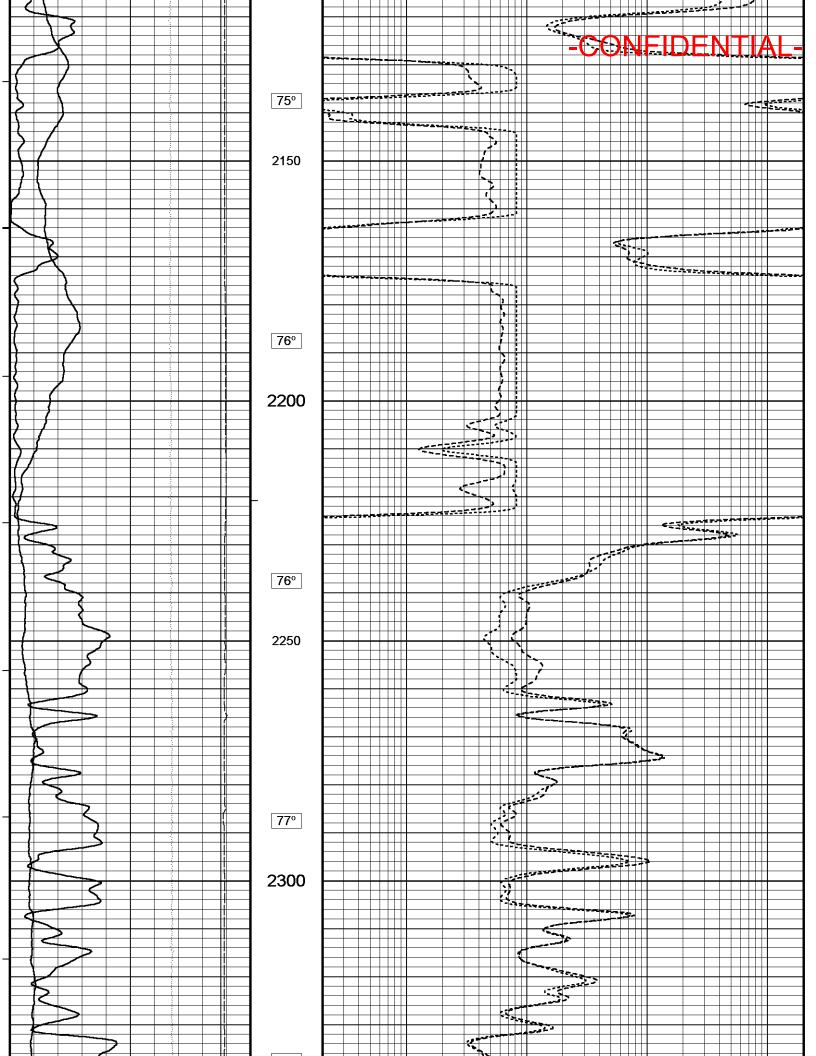


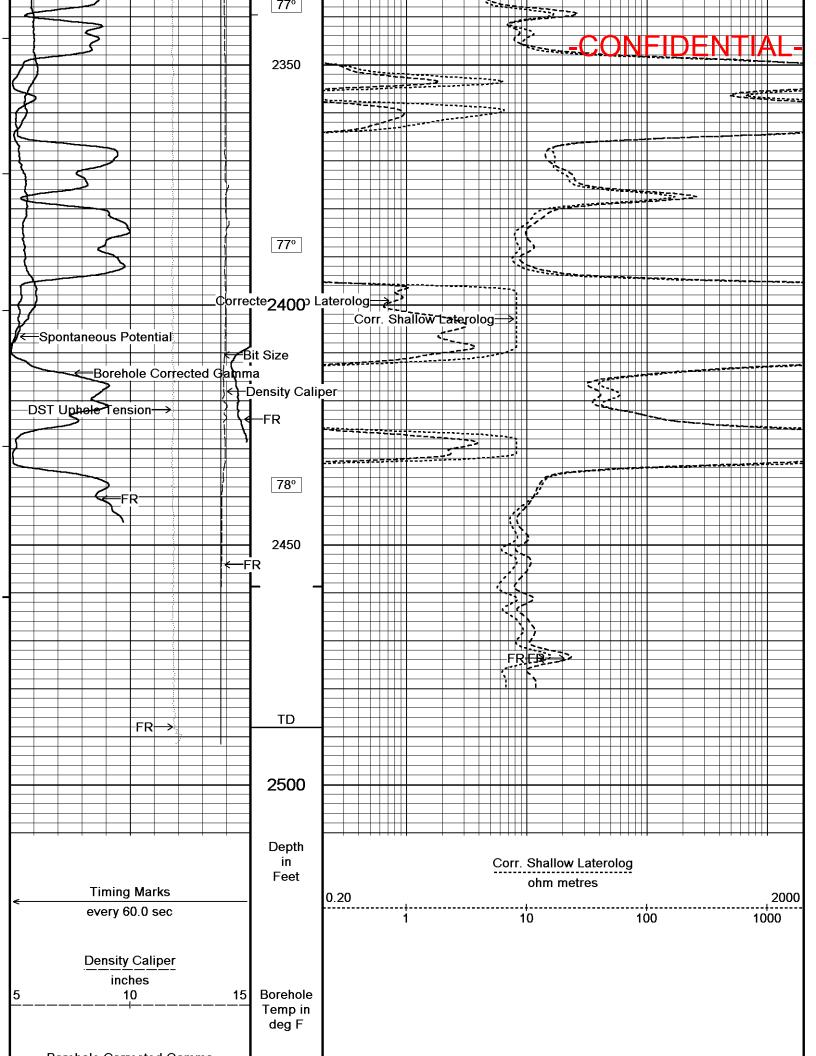


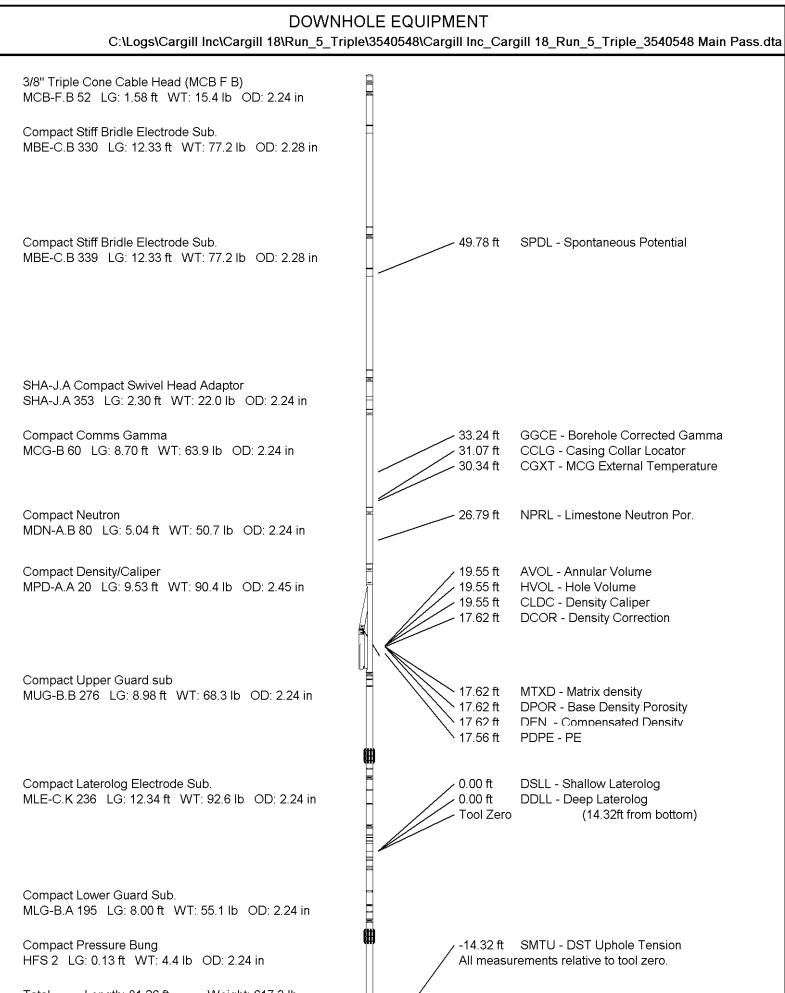









				5 Inch F	\mathbf{V}	
Filename	ased Data - Maximum Sam e: C:\Logs\Cargill Inc\Cargil /ersions: Logged with 13	 -AUG-2013 15:38 -AUG-2013 12:52				
<	Timing Marks every 60.0 sec		Depth in Feet	0.20	 Corr. Shallow La ohm metre 10	 2000 1000
5	Density Caliper inches 10	15	Borehole Temp in			


	Borenole Corrected Gamma				
0	API 100	200	HVI every	-C	ONFIDENTIAL-
200	300	400	_ 10 cu ft	•	
5	Bit Size inches 10	15	Annular Integral every 10 cu ft	Corrected Deep La ohm metres 0.20 1 10	
	Spontaneous Potential millivolts > 15 +				
	DST Uphole Ter pounds 0 3000	nsion 3000 6000	Replay Scale 1:240		
Filena	h Based Data - Maximum Samp ame: C:\Logs\Cargill Inc\Cargill em Versions: Logged with 13.0	1\Ca	rgill Inc_Carg	jill 18_Run_5_Triple_3540548 Repeat Pass.dta	Plotted on 20-AUG-2013 15:38 Recorded on 20-AUG-2013 12:52
个				5 Inch Repeat Section	▲

C:\Logs\Cargill Ir		VEY CALIBRATIO	N argill 18_Run_5_Triple_3540548 Main Pass.dta
General Constants All 000			Last Edited on 20-AUG-2013,12:07
General Parameters Mud Resistivity Mud Resistivity Temperature Water Level Borehole Fluid Processing	0.049 78.000 0.000 Wet Hole	ohm-metres degrees F feet	
Hole/Annular Volume and Differe HVOL Method HVOL Caliper 1 HVOL Caliper 2 Annular Volume Diameter Caliper for Differential Caliper Rwa Parameters Porosity used Resistivity used RWA Constant A RWA Constant M SW/APOR Tool Source	ntial Caliper Parameters Single Caliper Density Caliper N/A 3.750 Density Caliper Base Density Porosity Deep Laterolog 0.610 2.150 0.000	inches	
Gamma Calibration MCG-B 60 Background Calibrator (Gross) Calibrator (Net)	Measured 52 2285 2233	Calibrated (API) 36 1575 1539	Field Calibration on 08-AUG-2013 13:15
Gamma Constants MCG-B 60			Last Edited on 20-AUG-2013,12:01
Gamma Calibrator Number Mud Density Caliper Source for Processing Tool Position	45 1.05 Density Caliper Eccentred	gm/cc	
Concentration of KCI		kppm	

к миа туре К Mud Concentration		Chi	oriae 0.00	%		
High Resolution Temperatu	re Calibration	MCG-B 6	0			Field Cambration on 24-APR-2013,11:52
	N	leasured		Calibrate	ed(Deg F)	
Lower Upper		60.00 101.00			60.00 100.00	
High Resolution Temperatu	ure Constants I	MCG-B 60)			Last Edited on 24-APR-2013,11:52
Pre-filter Length			11			
Laterolog Calibration MLE	-C.K 236					Base Calibration on 20-AUG-2013,12:00 Field Check on
Base Calibration	N	leasured	C	alibrator	d (ohm-m)	
Channel		esistor 2			Resistor 2	
Shallow	0.0	976.7		0.0	1284.4	
Deep	0.0	988.0		0.0	795.7	
Groningen	0.0	975.9		0.0	808.4	
Gröningen	0.0	010.0		0.0	000.4	
Channel Shallow	Base Check	(ohm-m)	Fie	eld Checl	k (ohm-m) 0.0	
Deep					0.0	
Groningen					0.0	
Laterolog Constants MLE-	C.K 236					Last Edited on 20-AUG-2013,12:00
Squashor Start			0000	ohr	o m	
Squasher Start	_			onn	n-m	
Shallow Laterolog K Facto	r		2844			
Deep Laterolog K Factor			7957			
Groningen Laterolog K Fa	ctor		.8084			
Interference Rejection			50 Hz			
SP Connection	SP Bridle Ele					
Groningen Connection	Groningen Ele	ectrode (U	pper)			
Borehole Correction Const	tants					
Bridle Type		Star	ndard			
Stand-off			0.50	incl	nes	
Caliper Source		Density Ca	aliper			
Hole Size			N/A	incl	nes	
Mud Resistivity Source	Tempera	ature Corre	ected			
Temp. for Rm Corr.	MCG Extern	al Temper	ature			
Apparent Porosity and Wa	ter Saturation C	onstants				
Archie Constant (A)			1.00			
Cementation Exponent (M))		2.00			
Saturation Exponent (N)			2.00			
Saturation of Water for Ap		10	00.00	-	cent	
Resistivity of Water for Ap			0.05		n-m	
Resistivity of Mud Filtrate	for Sw		0.00	ohn	n-m	
Source for Rt			0.00			
Source for Rxo			0.00			
SP Calibration MLE-C.K 2	36					Field Calibration on 10-APR-2012 13:36
	N	leasured		Calibr	ated (mV)	
Reference 1		109.7			100.5	
Reference 2		-92.0			-100.8	
Caliper Calibration MPD-A	A 20					Base Calibration on 08-AUG-2013 14:51 Field Calibration on 08-AUG-2013 14:56
Base Calibration						
Reading No	Ra	leasured		Calibrata	r Sizo (in)	
	IV	26159		Canorato	r Size (in) 6.03	
2		36145			7.99	
3		45639			9.85	
4		56054			11.82	
5		0			0.00	
6		N/A			N/A	
1						

Measured Caliper (in) 7.94 Actual Caliper (in) 7.99

-CONFIDENTIAL

COMPANY		Cargill, Inc.					
WELL		Cargill 18					
FIELD		Lansing					
PROVINCE/COU	NTY	Tompkins County	Tompkins County				
COUNTRY/STAT	E	U.S.A. / New York					
Elevation Kelly Bushing	752.16	feet	First Reading 2	2488.00	feet		
Elevation Drill Floor	752.16	feet	Depth Driller 2	2486.00	feet		
Elevation Ground Level	748.16	feet	Depth Logger 2	2488.00	feet		
Weather	ford	Dual Laterolog Gamma Ray					

	COMP	COMPACT MONOPOLE /
W eatherford	0	SEMBLANCE
Com <mark>ban</mark> y Cargill, Inc.		
Field Lansing		
Prov () state U.S.A. / New York	York	
Courtry United States		
Locatioh X=820507.58, Y=937023.59	Y=937023.59 Latitude	Other Services
UWI / API NO.	Longtitude	
License 31-109-26509-00	0	
Permanent Datum MSL	Elevation	Elevations K.B. 752.16
Log Measured From GL 0.00	Above Permanent Datum	Elevations D.F. 752.16
Date	22-May-2013	
Run Number	One	
Service Order	3531404	
Depth Driller	1550.00 FT	
Depth Logger	1553.00 FT	
First Reading	1553.00	
Last Reading	30.00 FT	
Casing Driller	590.00 FT	
Casing Logger	580.00 FT	
	6.250 INCH	
Hole Fluid Type		
Sample Source	Flow Line	
Rm @ Measured Temperature	0.054 OHMM @ 78.00 DEGF	
	0.041 OHMM @ 78.00 DEGF	
RMC @ Measured Temperature	0.081 OHMM @ 78.00 DEGF	-
Source Rmf Source Rmc	Calc. Calc.	
	0.054 OHMM @ 78.00 DEGF	
Time Since Circulation	4 Hrs	
Maximum Recorded Temperature	71.00 DEGF	-
o. Base Location	13041 Muncy	
Recorded By	Nibras Nureldin	
Witnessed By	Patrick McGrath	

Since well log interpretations are opinions based upon inferences from well logs, we cannot and do not guarantee the correctness or accuracy of any interpretation. Therefore we shall not be liable or responsible for any loss, damage, cost or expense incurred or sustained by anyone resulting from any interpretation.

Rig:		Remarks: Service Orde	er# 3531404
Drilling Stopped			
Circulation Stopped	4 Hrs		
Tool on Bottom			
BHT	71.00 DEGF		

Equipment Data

Tool Type	Tool Type	Other

CXD MONOPOLE DIPOLE ARRAY SEMBLANCE

DTPQ, DTXQ and DTYQ are flags for zones where the values of DTP, DTX and/or DTY may not be accurate. **CONFIDENTIAL** be excersised if DTP, DTX and DTY are used in analysis and interpretation where these flags occur. Any other curves that are dependent upon DTP, DTX and DTY should also be usec with caution. These include VPVSX, VPVSY, POIS, SPHI, ITTP, ITTX and ITTY.

Another flag of potentially inaccurate responses is the borehole rugosity as indicated by the caliper(s).

Poisson's Ratio: POIS = (2-(DTX/DTP)^2)/(2*(1-(DTX/DTP)^2))

VPVX = DTX/DTP VPVY = DTY/DTP

XX DIPOLE Shear Processing Receiver levels: R1, R2, R3, R4, R5, R6, R7, R8. First receiver offset 8.5 feet. Frequency pre-filtered 3500 - 5000 Hz bell filter. Slowness Configuration 60-360 usec/ft, peak from 85 to 190 usec/ft. Corridor width: +200 -50 Semblance @ x16 resolution.

YY DIPOLE Shear Processing Receiver levels: R1, R2, R3, R4, R5, R6, R7, R8. First receiver offset 7.8 feet. Frequency pre-filtered 3500 - 5000 Hz bell filter. Slowness Configuration 60-360 usec/ft, peak from 85 to 200 usec/ft. Corridor width: +200 -50 Semblance @ x16 resolution.

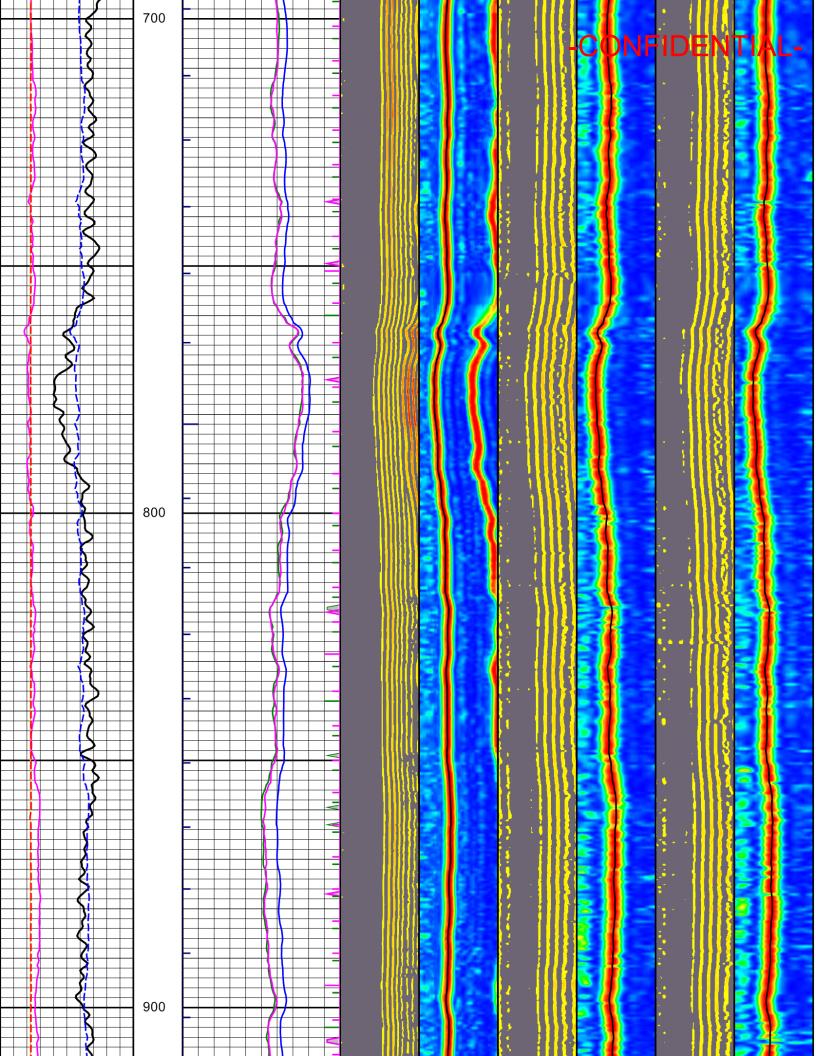
MONOPOLE Compressional Processing Receiver levels: R1, R2, R3, R4, R5, R6, R7, R8. First receiver offset 6.8 feet. Frequency pre-filtered 5000 - 20000 Hz butterworth filter. Slowness Configuration 40-240 usec/ft, peak from 45 to 95 usec/ft. Corridor width: +50 -50 Semblance @x16 resolution.

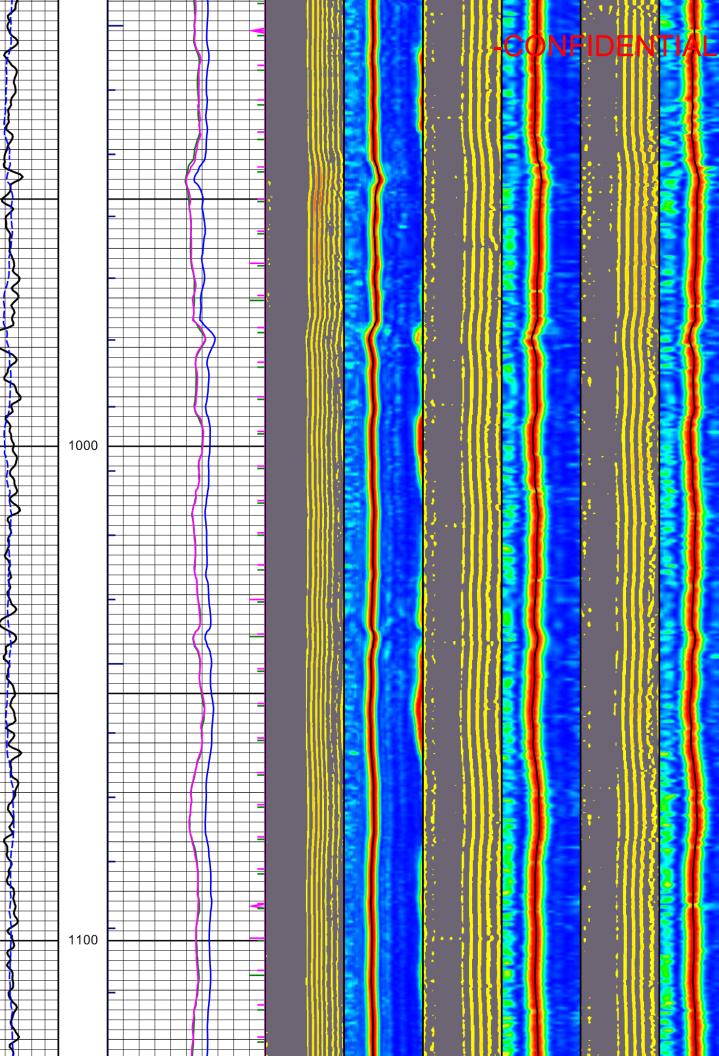
ANALYST: C. RIVERA PROGRAM: Petrolog 11.0.80.0 and Petrolog 10.7.1.6

ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATION, AND WE SHALL NOT, EXCEPT IN THE CASE OF GROSS OR WILLFULL NEGLIGENCE ON OUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES, OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO OUR GENERAL TERMS AND CONDITIONS SET OUT IN OUR CURRENT PRICE SCHEDULE WEATHERFORD INTERNATIONAL, LTD.

Lithology / Shading Legend

Wash Out Mud Cake DT Lower Quality

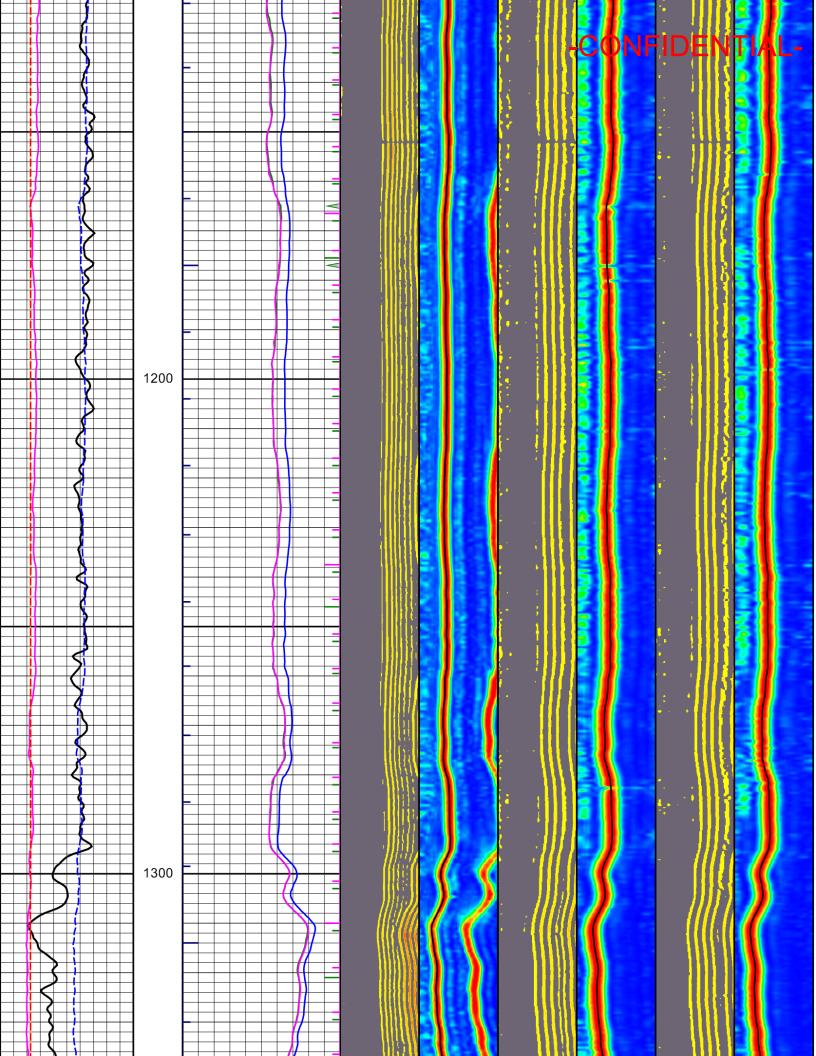

Log Description

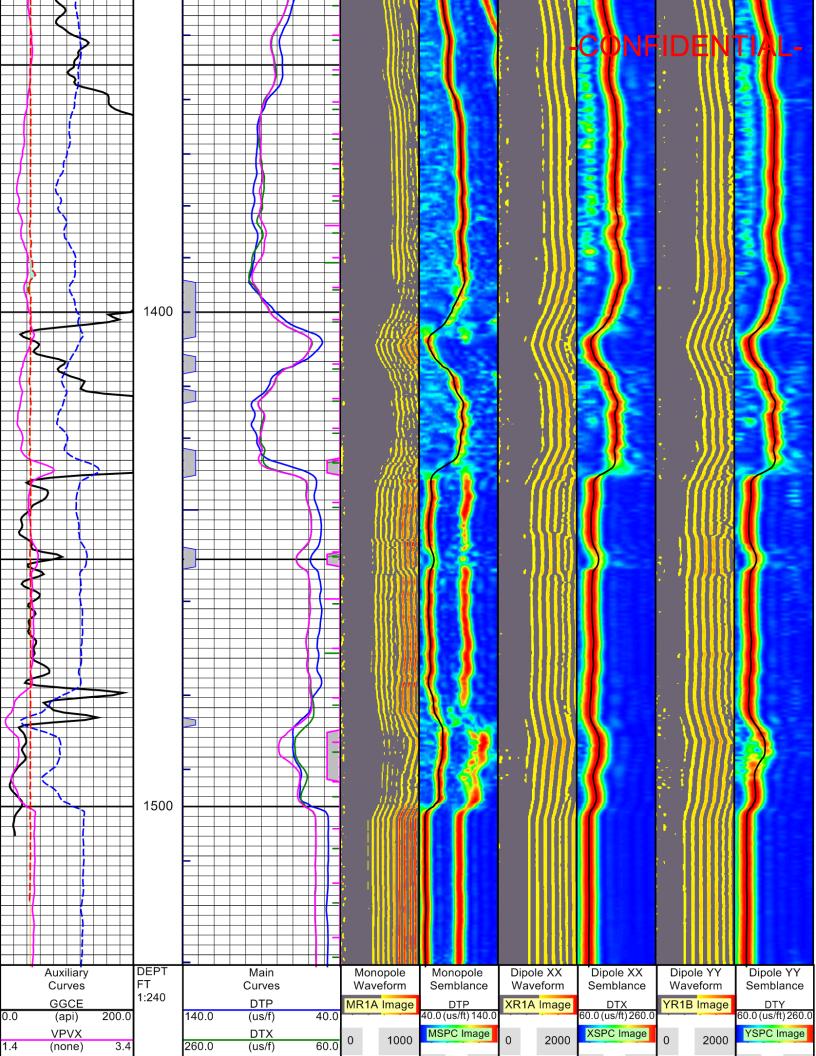

GGCE	Borehole Corrected Gamma
VPVX	VP/VX Ratio
POIS	Poissons Ratio
BIT	Bit size
CLDC	Density Caliper
DTP	Compressional Delta T
DTX	XX Dipole Shear Delta T
DTY	YY Dipole Shear Delta T

- DTPQDTP Quality FlagDTXQDTX Quality FlagDTYQDTY Quality Flag
- ITTP Compressional Integration ticks
- ITTX Shear XX Integration ticks
- ITTY Shear YY Integration ticks

-CONFIDENTIAL-

	Auxiliary Curves		DEPT FT		Main Curves		W	onopole aveform	Mo Sei	nopole nblance	Dip Wa	ole XX veform	Di Se	pole XX mblance	Di W	pole YY aveform	Dip Sen	ole YY nblance
0.0	GGCE	200.0	1:240	140.0	DTP	40.0	MR	1A Image	40.07	DTP us/ft) 140.0	XR1	A Image	60.04	DTX (us/ft)260.0	YR	1B Image	60.07	DTY Js/ft)260.0
0.0	(api) VPVX	200.0		140.0	(us/f) DTX	40.0				PC Image				us/π)260.0 PC Image				C Image
1.4	(none)	3.4		260.0	us/f) DTY	60.0	0	1000			0	2000			0	2000		
0.0	POIS (none)	0.5		260.0	(us/f)	60.0			40	140			60	260			60	260
4.0	BIT (in)	14.0		0.0	DTPQ (flg)	12.0												
4.0	CLDC (in)	14.0		12.0	DTXQ (flg)	0.0												
				12.0	DTYQ (flg)	0.0												
				0.0	ITTP	1.0												
				0.0	(msec) ITTX	1.0												
				1.0	(msec)	0.0												
				1.0	ITTY (msec)	0.0												
				1.0	(insec)		.				1			¥	11			
	₹						ę.				1			-				-
															23	11111		
							2								•			1
							•				. 1			1.5				
											1. C				.			<u>}</u>
ľ	1							- [[]]			12	{ 	- {		λ^{-1}	Hini	5	F
			600							-5	1 . · ·				. <mark>`</mark>	1114	-4	Ł
			000								1			<u> </u>	11	1115	- 2	
											22	i H H	- {	<u>}</u>			5	
						-						11151				\mathbf{H}	-)	
									2/		11		-7	<u> </u>			\exists	<u>/</u>
				-								ATR.	3			1118		
								- 11111	Ξ.	122					, 			4
		\$									8					3118		
				_		-	 	- 111111					-1			. H E		
										100								
					+ $+$ $+$		1								. <u>1</u>	1		
				\square						122			- /		1			
									-									
										1.12	4				1		- 3	
+							1			100					:		-2	
				-++			1	- 5				115	2		l.			
					+++///+		1			125	1						- 1	
					+ + (+				E.	1-200		115			2			
					+					125			- 3		₹`			
	 				+ + + # }		1			1.0		115			1		-	
)			1200			2					
							i -			1.5	1				•	1115	2	
										1			=}		•	1115		
											3				ų.	115		
										100	1	115			.1			
						-							-					




ţ

Í

t,

¢

	POIS			DTY		40	140		60	260		60	260
0.0	(none)	0.5	260.0	(us/f)	60.0								
	BIT			DTPQ									1
4.0	(in)	14.0	0.0	(flg)	12.0			-			IDEN	IIA	\L-
	CLDC			DTXQ									
4.0	(in)	14.0	12.0	(flg)	0.0								
				DTYQ									
			12.0	(flg)	0.0								
				ITTP									
			0.0	(msec)	1.0								
				ITTX									
			1.0	(msec)	0.0								
				ITTY									
			1.0	(msec)	0.0								

Company	Cargill, Inc.
Well	Cargill 18
Field	Lansing
Prov. / State	U.S.A. / New York
Country	United States

COMPACT MONOPOLE / CROSS DIPOLE SEMBLANCE

COMPARY Car	Cargill, Inc.			
	Cargill 18			
CE/COUNTY	Lansing Tompkins County	ınty		
STATE	U.S.A. / New York	York		
	X=820507.58, Y=9	X=820507.58, Y=937023.59		PRINT
SEC TWP RGE	Oth	8 S		
	Pho	Photo Density	Data Pack	
API Number Permit Number 31-109-26509-00		Compensated Neutron Cross Dipole	Caliper	
Permanent Datum Ground Level, Elevation 748.16 feet	_evel, Elevatio	n 748.16 feet	Elevations:	feet
Log Measured From GL			DF	752.16 752.16
Date	22-May-2013		1	
Run Number	One			
Service Order	3531404			
Depth Driller	1550.00	feet		
Depth Logger	1553.00	feet		
First Reading	1553.00	feet		
Casing Drillor	500.00	foot		
Casing Logger	580.00	feet		
Bit Size	6.250	inches		
Hole Fluid Type			_	
Density / Viscosity	9.50 Ib/USg	3g 27.00 sec/qt		
Sample Source	Flow Line			
Rm @ Measured Temp	0.054 @ 78.0	0 ohm-m		
Rmf @ Measured Temp	0.041 @ 78.0	0 ohm-m		
Rmc @ Measured Temp	0.081 @ 78.0		_	
Source Rmf / Rmc	Calc.	Calc.		
Rm @ BHT	0.054 @ 78.0	0 ohm-m		
Time Since Circulation	4 Hrs			
Max Recorded Temp	71.00	deg F		
Equipment / Base	13041	Muncy		
Recorded By	Nibras Nureldin	din		
Witnessed By	Patrick McGrath	rath		

		Last Edited: 22-MAY-2013 20:52				
	Bit Size	Depth From		Depth To		
	inches	feet		feet		
	8.750	28.50		580.00		
	6.250	580.00		1553.00		
Туре	Size	Depth From	Shoe Depth	oe Depth Weight		
	inches	feet	feet			
	10.750	0.00	28.00	42.00		
	7.000	0.00	580.00	580.00 17.00		

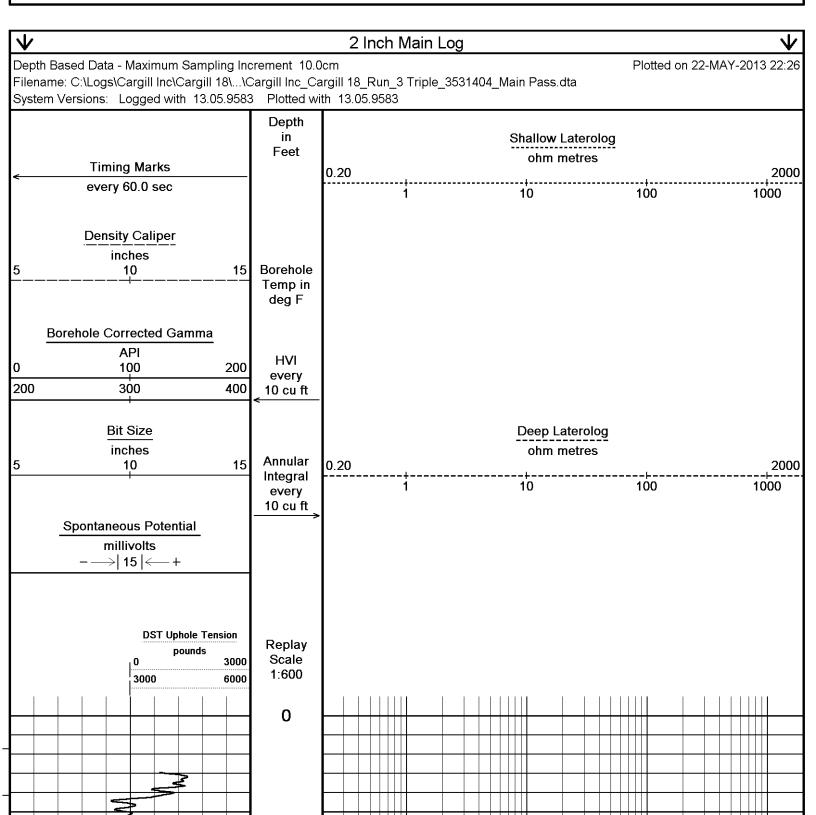
REMARKS

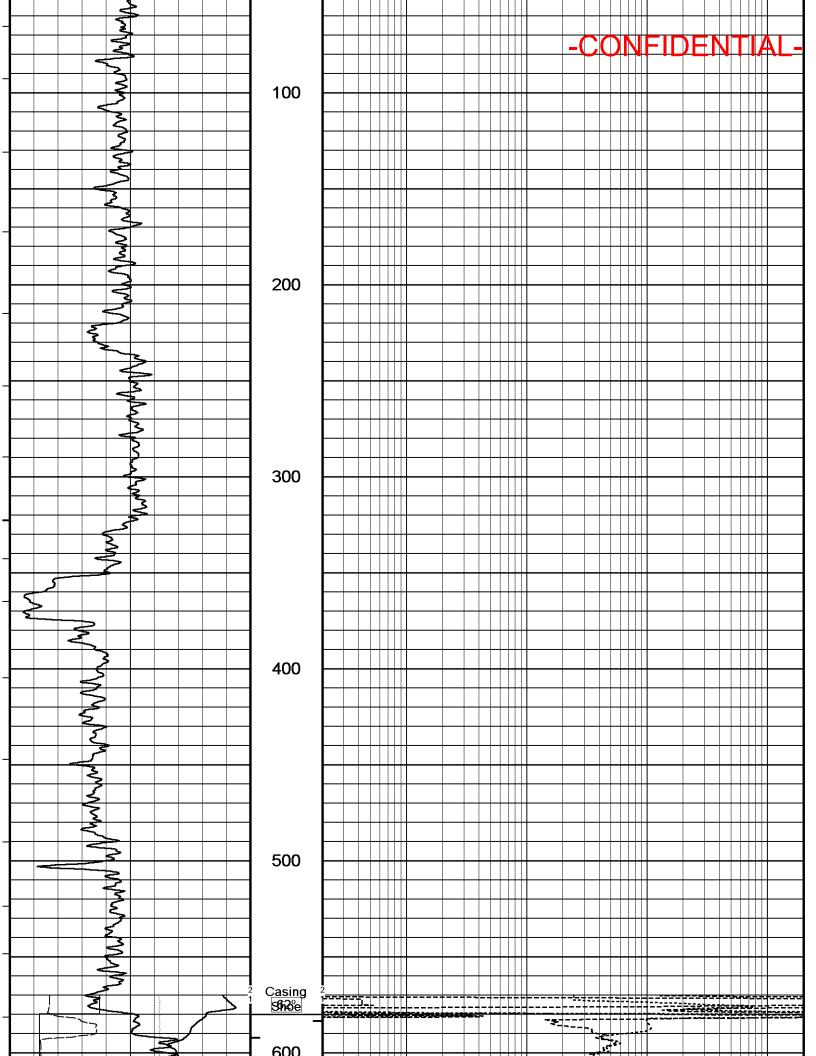
Software: WLS 13.05.9583

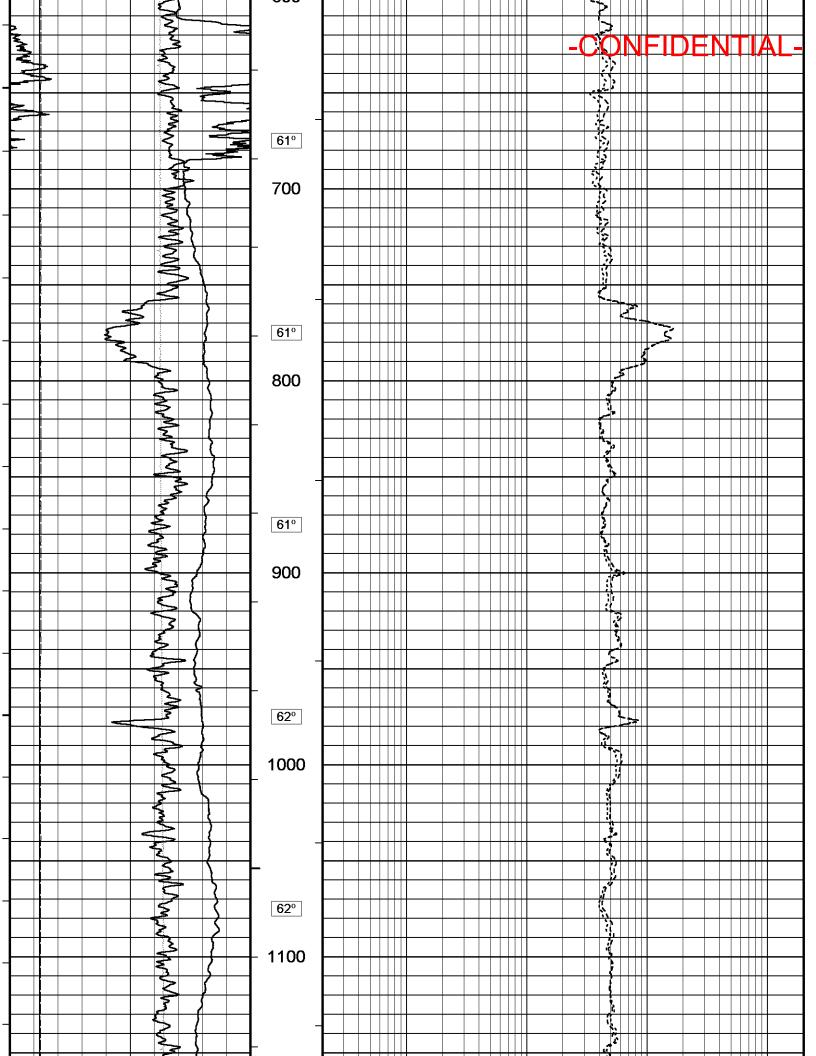
Tools Run 1: MBE, MBE, SHA, MCG, MDN, MPD, MFE, MUG, MDL, MLG, BHT

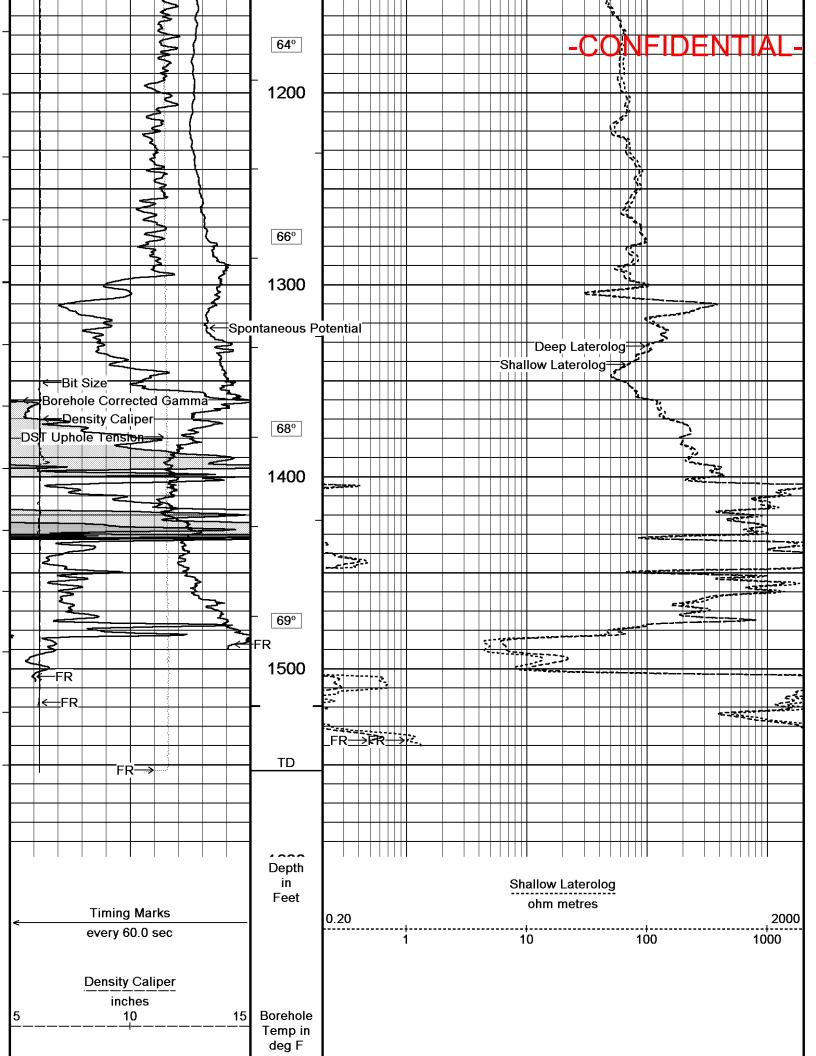
Hardware: MDN - Dual Eccentraliser

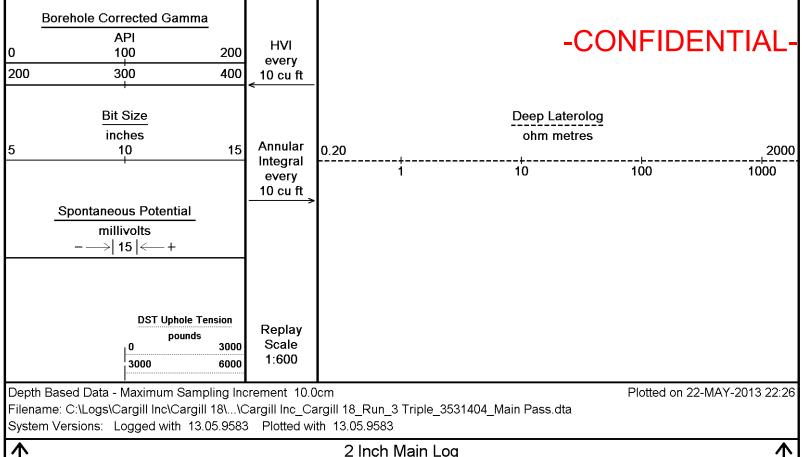
MDL - Two-1 Inch Standoffs MPD - Two Roll over subs

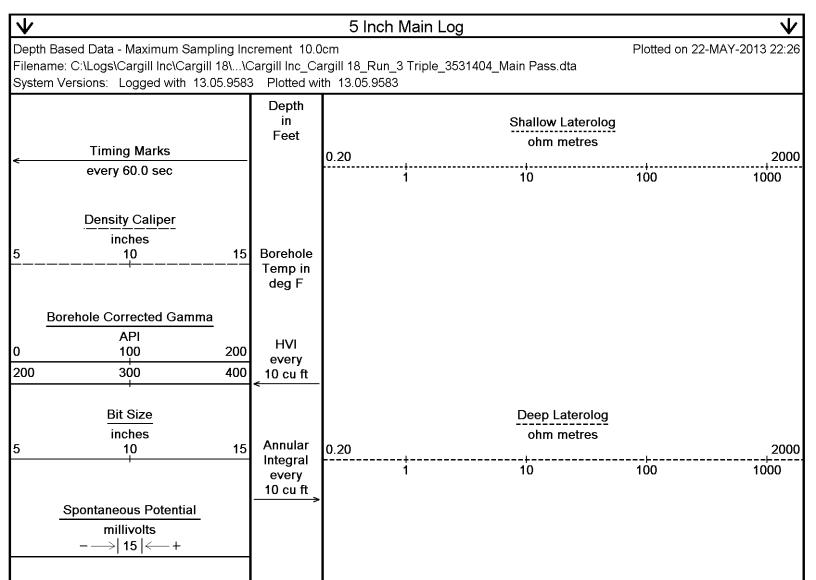

Density Matrix was ran on 2.71 gg/cc

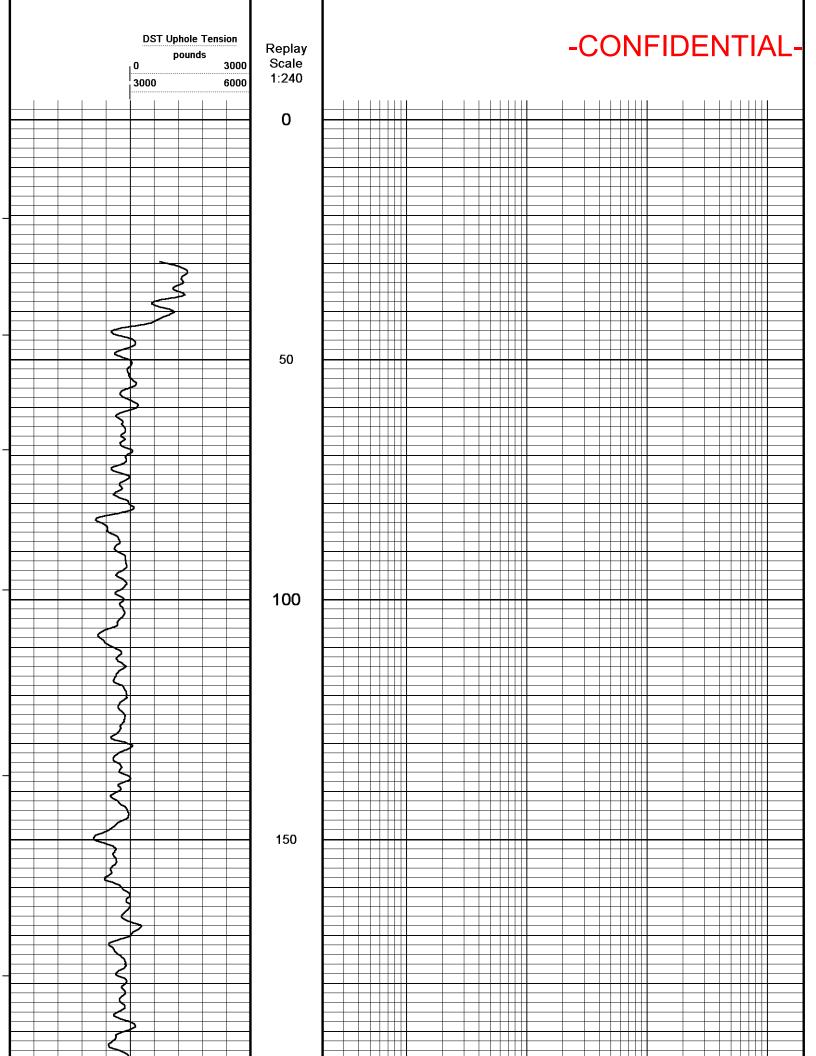

Crew: Nibras Nureldin Bruce Clark Gary Cronin Sebastian Londono Gamma ray spikes up at the bottom of the borehole because the gamma ray sub ran below the sources 4.5 inch casing was used to calculate annular hole volumes Gamma ray was recorded to ground level

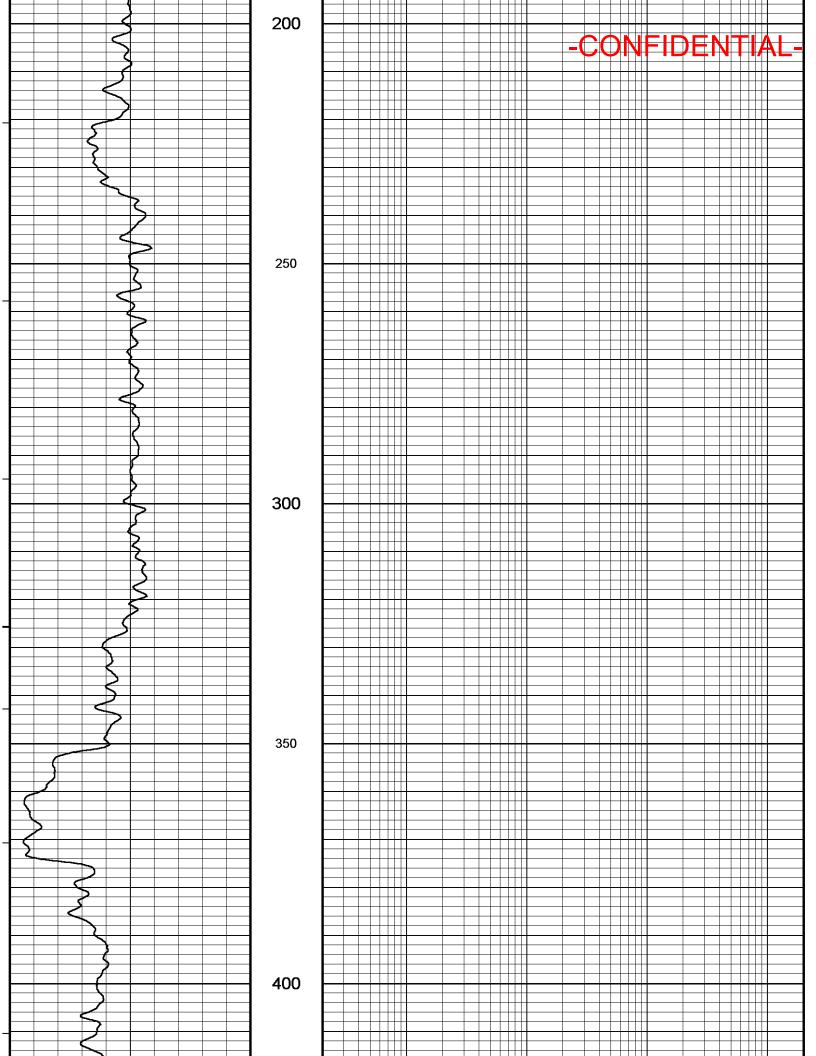

No Mud report was found on location. 100% Brine was added to the well that had 10% brine water in the well.

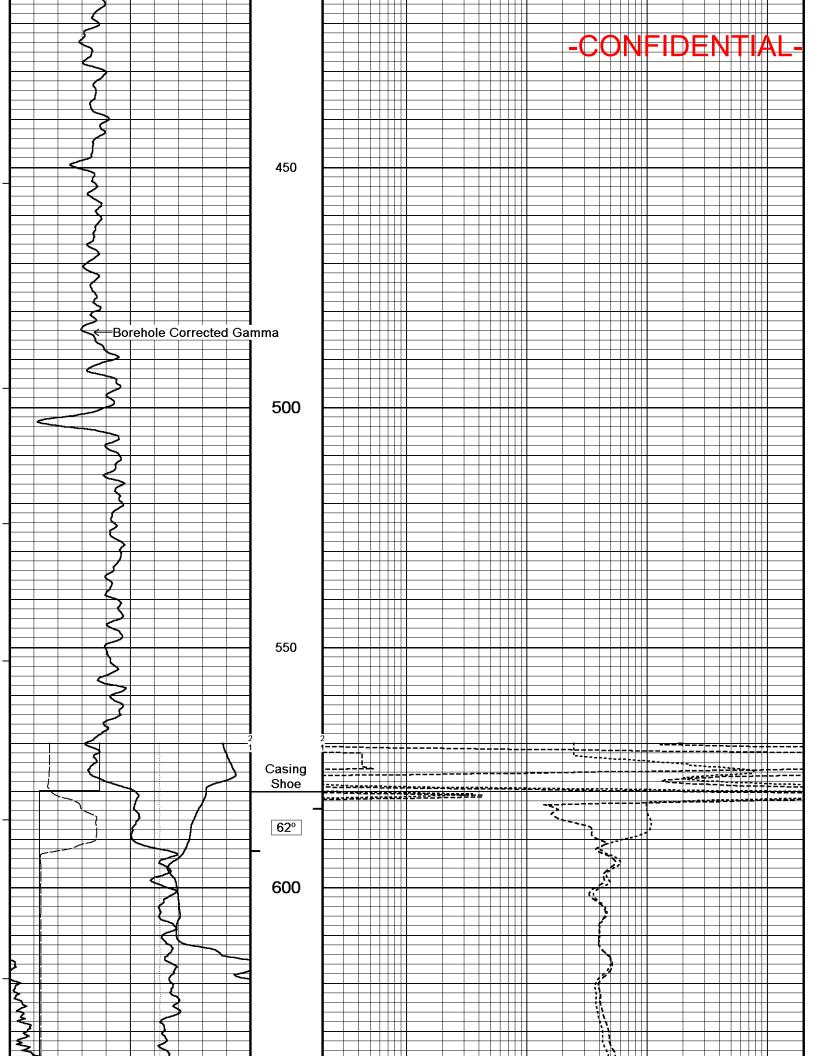

Mud Density is 9.5 lbs/USg

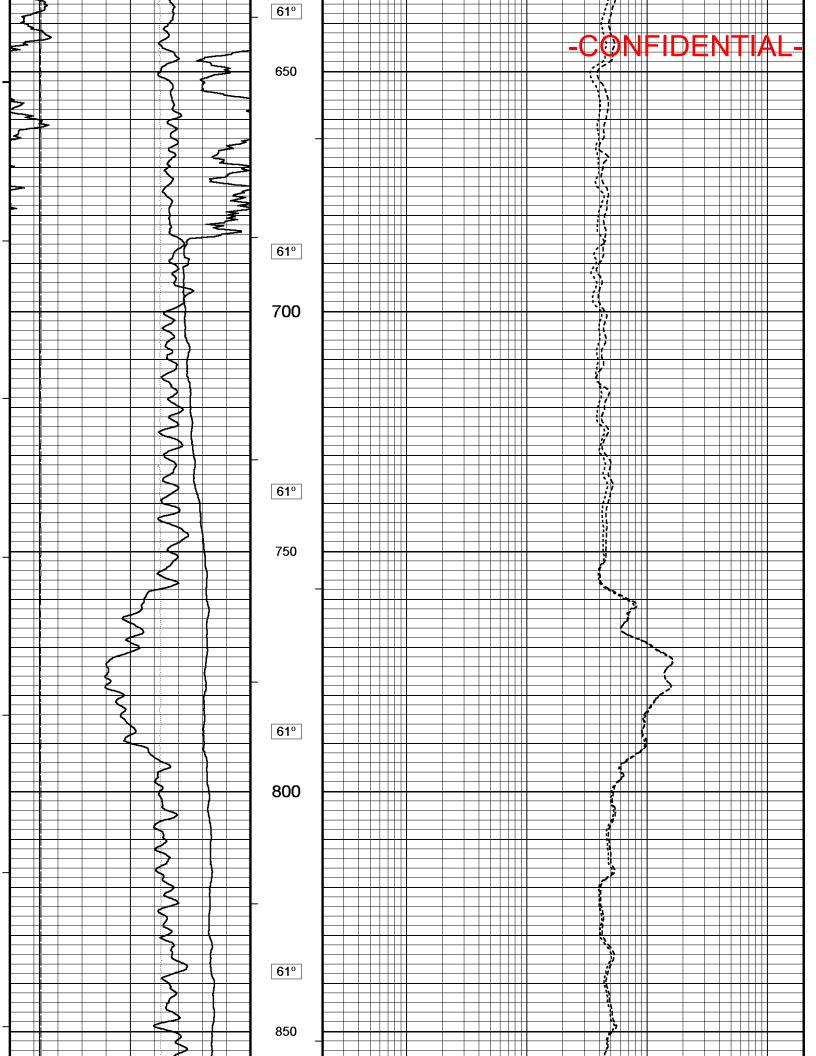

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not, guarantee the accuracy or correctness of any interpretations, and we shall not, except in the case of gross or wilful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions in our price schedule.

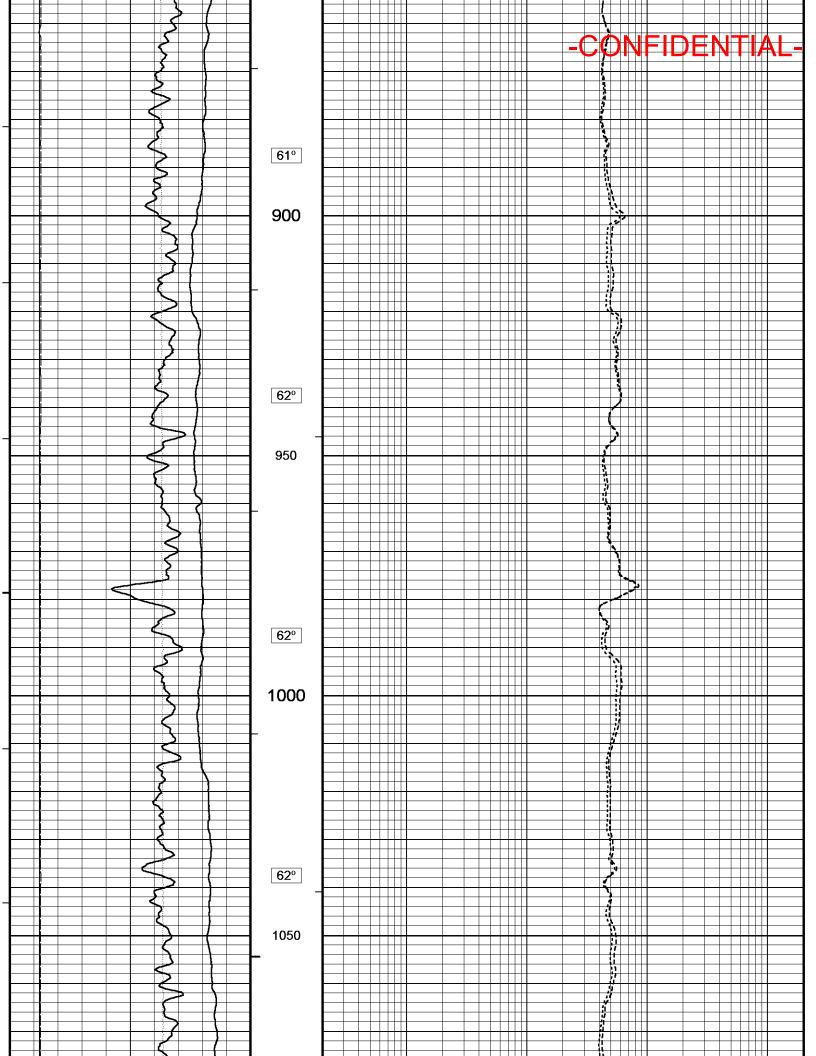


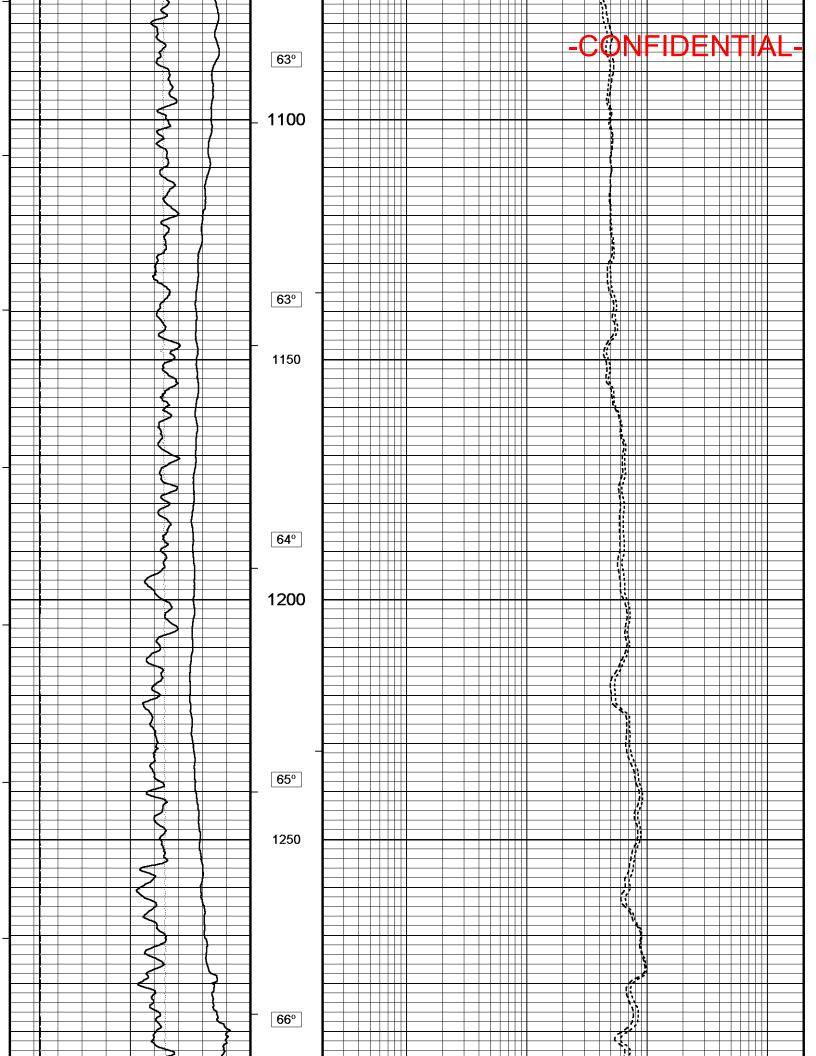


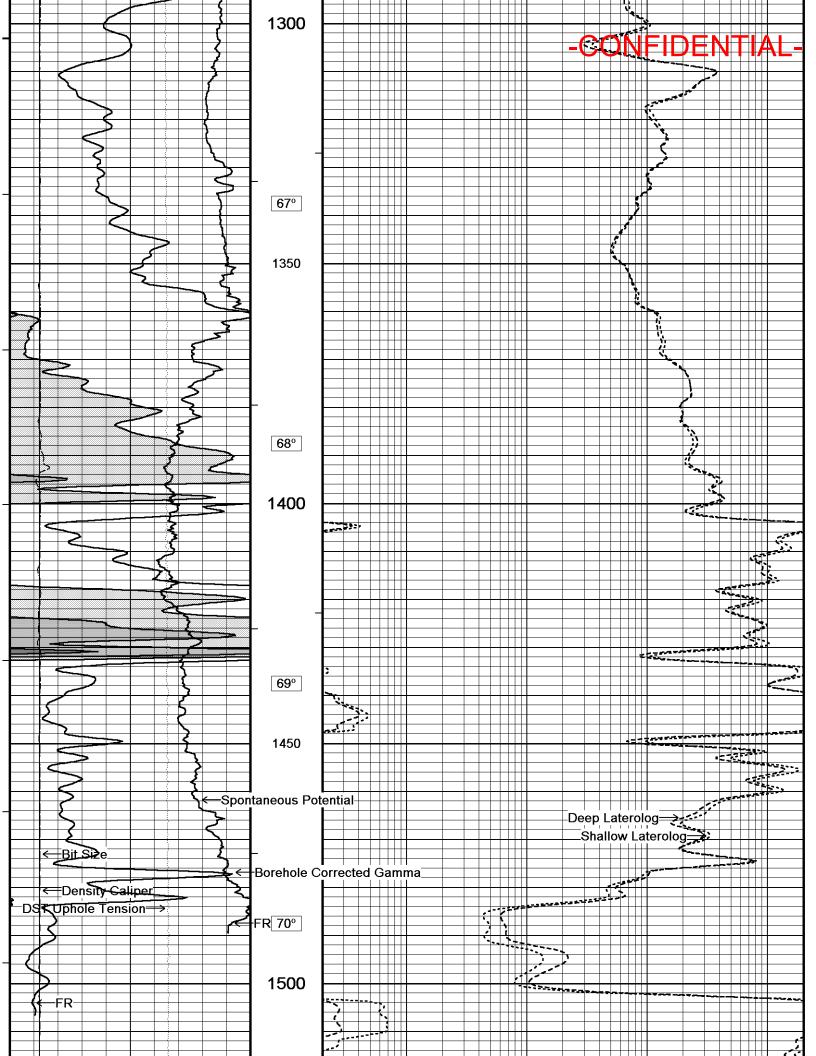


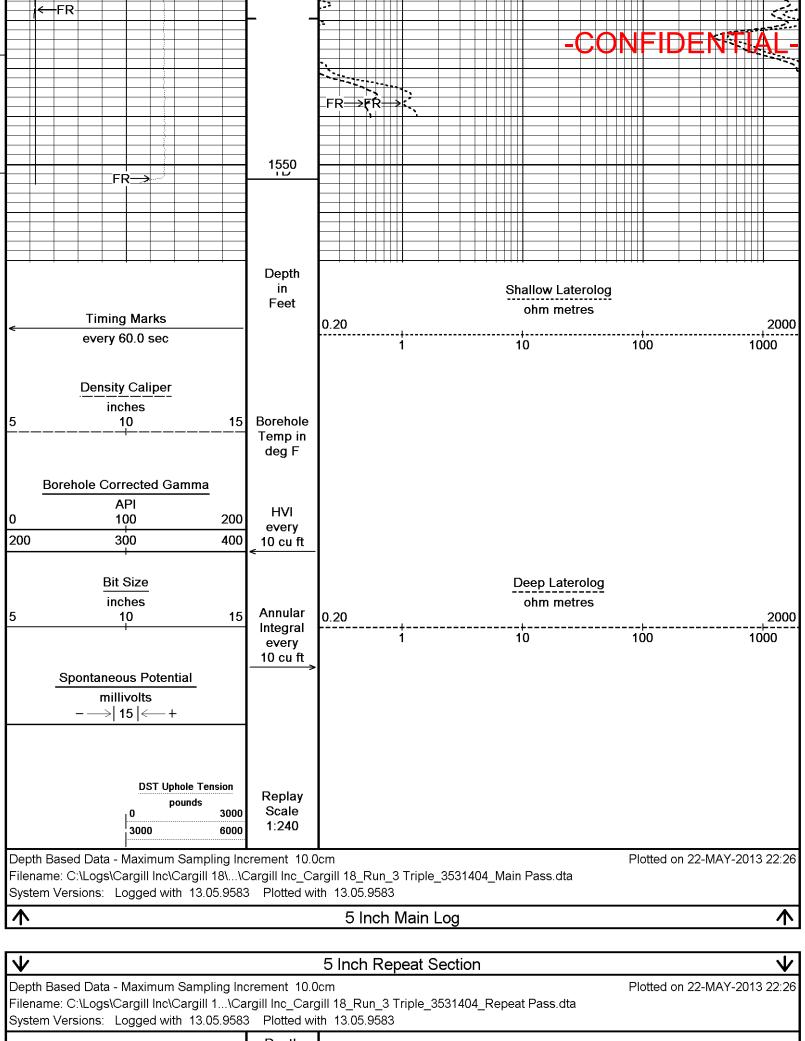

2 Inch Main Log

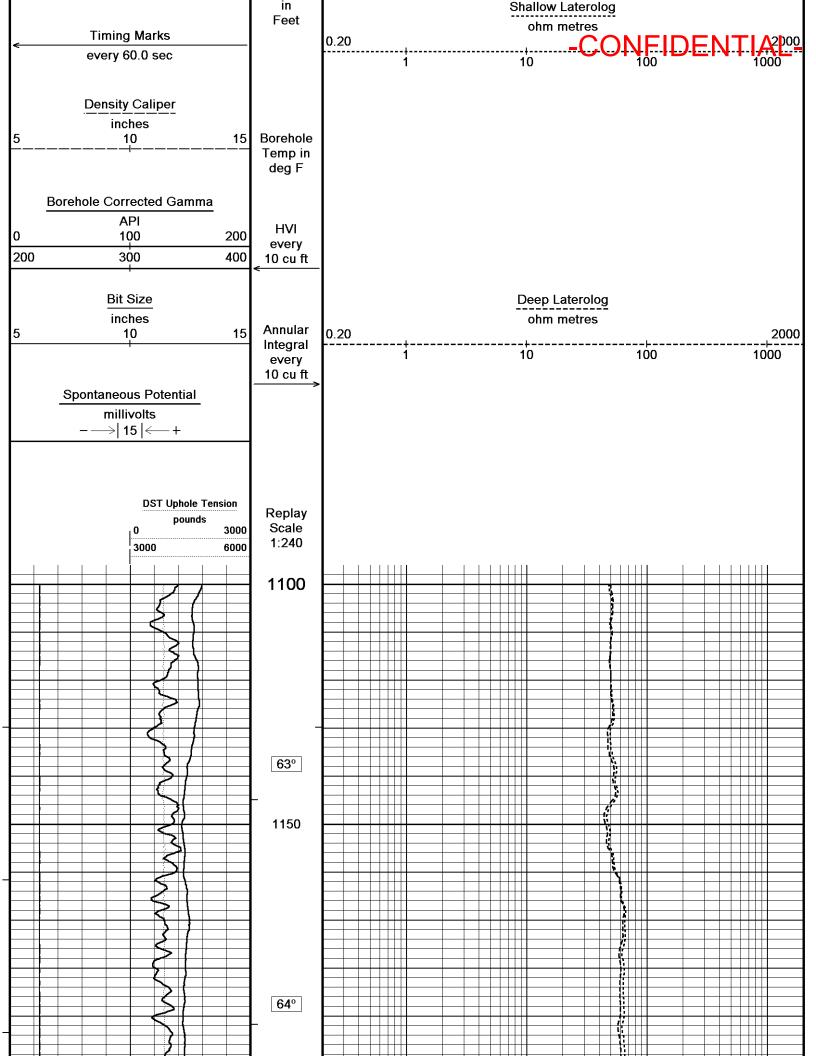

个

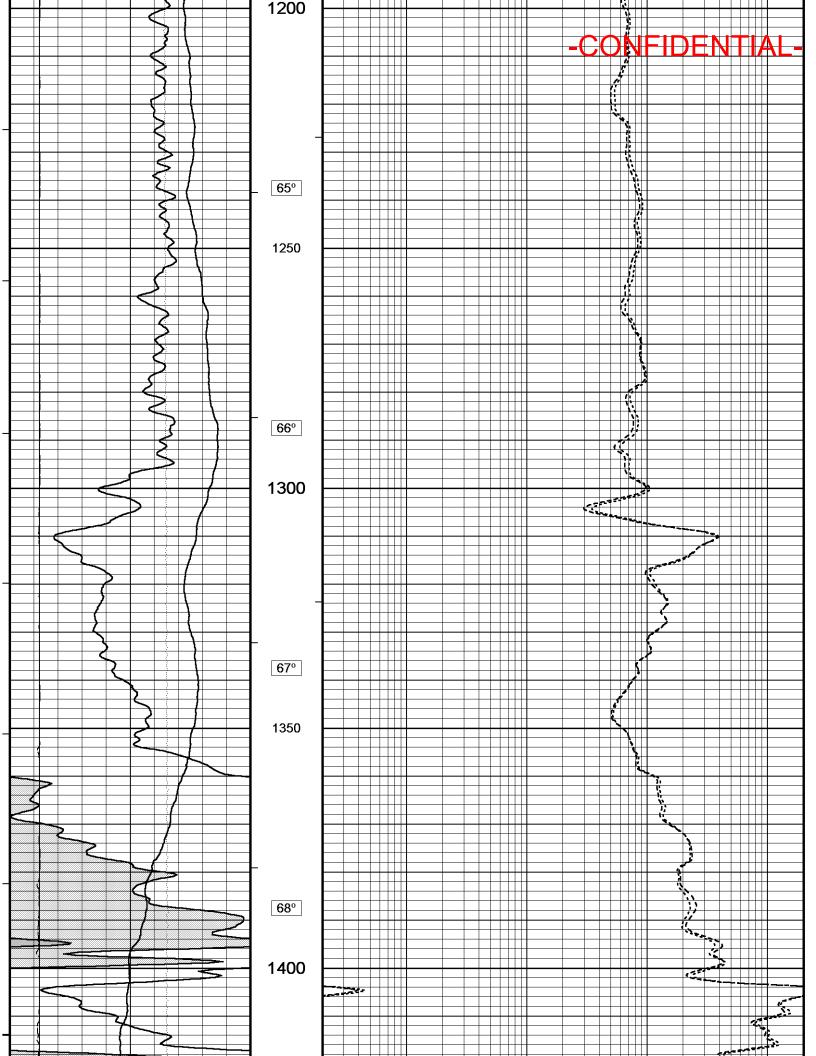


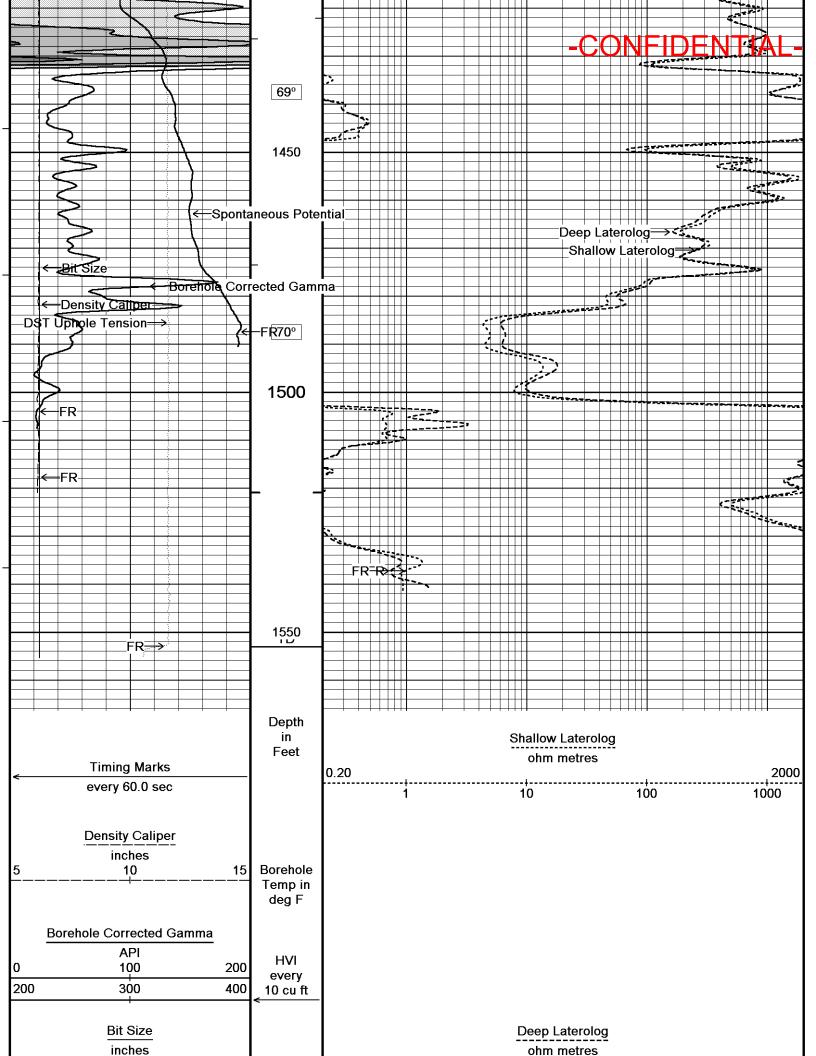




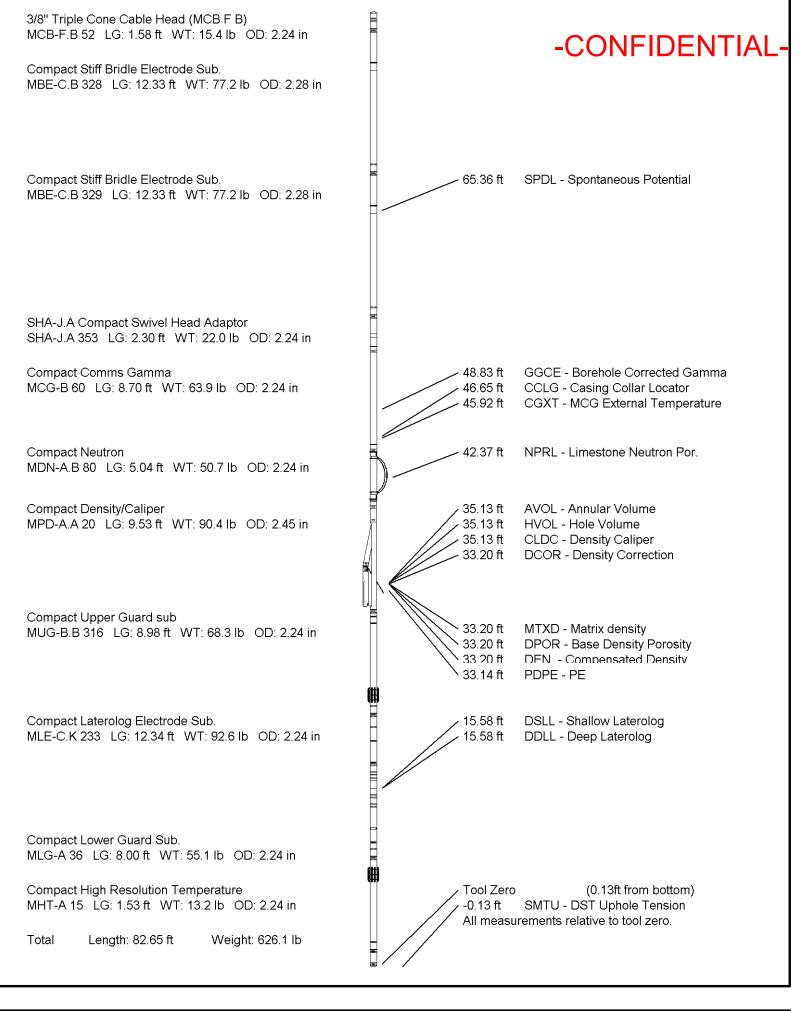








Depth


5 10 1			
	lntegral every	+ 1	
	10 cu ft		-CONFIDENTIAL-
Spontaneous Potential			
$ \begin{array}{c} millivolts \\ - \longrightarrow 15 \longleftarrow + \end{array} $			
DST Uphole Tension			
pounds	Replay 0 Scale		
0 300			
Depth Based Data - Maximum Sampling I	neroment 10.0em		Plotted on 22-MAY-2013 22:26
Filename: C:\Logs\Cargill Inc\Cargill 1\C		n_3 Triple_3531404_Repe	
System Versions: Logged with 13.05.95	83 Plotted with 13.05.9	9583	
^	5 Inch	Repeat Section	个
	BEFORE SU	RVEY CALIBRATIC	DN
C:\Logs\Cargill Inc	\Cargill 18\Run_3 Tripl	e\3531404\Cargill Inc_C	argill 18_Run_3 Triple_3531404_Main Pass.dta
General Constants All 000			Last Edited on 22-MAY-2013,15:40
General Parameters			
Mud Resistivity Mud Resistivity Temperature	0.054 78.000		
Water Level	0.000	_	
Borehole Fluid Processing	Water Level Switch		
Hole/Annular Volume and Different	-		
HVOL Method HVOL Caliper 1	Single Caliper Density Caliper		
HVOL Caliper 2	N/A		
Annular Volume Diameter Caliper for Differential Caliper	4.500 Density Caliper	inches	
	Denety early		
Rwa Parameters Porosity used	Base Density Porosity		
Resistivity used	Deep Laterolog		
RWA Constant A RWA Constant M	0.610 2.150		
SW/APOR Tool Source	0.000		
Gamma Calibration MCG-B 60			
	Measured	Calibrated (API)	Field Calibration on 21-MAY-2013 09:51
Background	78	55	
Calibrator (Gross) Calibrator (Net)	2255 2177	1594 1539	
Gamma Constants MCG-B 60			Last Edited on 18-MAY-2013,20:47
Gamma Calibrator Number	45		
Mud Density	1.03	gm/cc	
Caliper Source for Processing Tool Position	Density Caliper Eccentred		
Concentration of KCI	Locentied	kppm	
K Mud Type K Mud Concentration	Chloride 0.00	%	
High Resolution Temperature Calib		a	Field Calibration on 24-APR-2013,11:52
Lower	Measured 60.00	Calibrated(Deg F) 60.00	
Upper	101.00	100.00	

Llink Decelution Temperature Constants MCC D CC

Figh Resolution Temperatu	re Constants MCG-B t	50			Last Ealled on 24-APR-2013, 11.32
Pre-filter Length		11			
Laterolog Calibration MLE-	C.K 233				Base-Califoration on 10 APR 2012 12 44 Field Check on
Base Calibration	M		S-1:64-	d (- h	
Channel	Measured Resistor 1 Resistor 2		stor 1	d (ohm-m) Resistor 2	
Shallow	0.0 977.3		0.0	1284.4	
Deep	0.0 984.3		0.0	795.7	
Groningen	0.0 977.5		0.0	808.4	
Channel	Base Check (ohm-m)	Ei	old Chor	k (ohm m)	
Shallow	47.3			k (ohm-m): 0.0	
Deep	29.1			0.0	
Groningen	237.9			0.0	
Laterolog Constants MLE-0					Last Edited on 22-MAY-2013,14:45
-		40000			
Squasher Start		40000	oh	m-m	
Shallow Laterolog K Factor		1.2844			
Deep Laterolog K Factor		0.7957			
Groningen Laterolog K Fac		0.8084 60 Hz			
Interference Rejection					
SP Connection Groningen Connection	SP Bridle Electrode (I Groningen Electrode (I				
Gronnigen Connection		opper)			
Borehole Correction Const					
Bridle Type	Sta	andard	_		
Stand-off		0.50	inc	hes	
Caliper Source	Density C				
Hole Size		N/A	inc	hes	
Mud Resistivity Source Temp. for Rm Corr.	Constant	Value N/A			
		N/A			
Apparent Porosity and Wat	ter Saturation Constants				
Archie Constant (A)		1.00			
Cementation Exponent (M)		2.00			
Saturation Exponent (N)		2.00			
Saturation of Water for Apo		100.00		rcent	
Resistivity of Water for Apo		0.05		m-m	
Resistivity of Mud Filtrate f	for Sw	0.00	oh	m-m	
Source for Rt		0.00			
Source for Rxo		0.00			
SP Calibration MLE-C.K 23	33				Field Calibratian on 22 MAY 2012 15:20
	Measured		Calib	rated (mV)	Field Calibration on 22-MAY-2013,15:39
Reference 1	109.7		Callb	100.5	
Reference 2	-92.0			-100.8	
					Base Calibration on 14-MAY-2013 15:42
Caliper Calibration MPD-A.	.A 20				Field Calibration on 14-MAY-2013 15:42 Field Calibration on 21-MAY-2013 09:19
Base Calibration					· ···· · · · · · · · · · · · · · · · ·
Reading No	Measured		Calibrate	or Size (in)	
1	25425			6.03	
2	35728			7.99	
3	45344			9.85	
4	55749			11.82	
5	0			0.00	
6	N/A			N/A	
Field Calibration					
	Measured Caliper (in)		Actual (Caliper (in)	
	6.06			6.03	

DOWNHOLE EQUIPMENT

C:\Logs\Cargill Inc\Cargill 18\Run_3 Triple\3531404\Cargill Inc_Cargill 18_Run_3 Triple_3531404_Main Pass.dta

COMPANY WELL

Cargill, Inc. Cargill 18

FIELDLarPROVINCE/COUNTYToCOUNTRY/STATEU.S

Lansing Tompkins County U.S.A. / New York

Elevation Kelly Bushing Elevation Drill Floor Elevation Ground Level 752.16 feet 752.16 feet 748.16 feet First Reading1553.00feetDepth Driller1550.00feetDepth Logger1553.00feet

Dual Laterolog

Gamma Ray

	_			
		Compensa	Photo Density Compensated Neutron	
Weatherford	Ē	Gamr	Gamma Ray	
	Cargill, Inc.			
	sing			
CE/COUNTY	Tompkins County	ounty		
STATE	U.S.A. / New York	n York		
	20507.5	370		
		Z/Elevation=784.10 WEL		
		Other Services Dual Laterolog	Data Pack	
API Number		Cross Dipole	Caliper	
Permit Number 31-109-26509-00				
Permanent Datum Ground Level, Elevation 748.16 feet	evel, Eleva	tion 748.16 feet	vations:	feet
Log Measured From GL				752.16
			IGL 7	48.16
Date	22-May-2013	013		
Run Number	One			
Service Order	3531404			
Depth Driller	1550.00	feet		
Depth Logger	1553.00	feet		
First Reading	1553.00	feet		
Last Reading	30.00	feet		
Casing Driller	590.00	feet		
_ogger	580.00	feet		
Bit Size	6.250	inches		
Hole Fluid Type	Brine			
sity	9.50 lb/	lb/USg 27.00 sec/qt		
PH / Fluid Loss				
Sample Source	Flow Line			
Rm @ Measured Temp	0.054 @ 78.0	'8.0 ohm-m		
Rmf @ Measured Temp	0.041 @ 78.0	8.0 ohm-m		
Rmc @ Measured Temp	0.081 @ 78.0	'8.0 ohm-m		
Source Rmf / Rmc	Calc.	Calc.		
Rm @ BHT	0	78.0 ohm-m		
Circulation	4 Hrs			
	71.00	deg F		
Equipment / Base	13041	Muncy		
Recorded By	Nibras Nureldin	reldin		
Witnessed By	Patrick McGrath	Grath		

		RD	Last Edited: 22-MAY-2013 20:52			
	Bit Size	Depth From		Depth To		
	inches	feet		feet		
	8.750	28.50		580.00		
	6.250	580.00		1553.00		
		CASING RECOR	D			
Туре	Size	Depth From	Shoe Depth	pe Depth Weight		
	inches	feet	feet	pounds/ft		
	10.750	0.00	28.00	42.00		
	7.000	0.00	580.00	580.00 17.00		

REMARKS

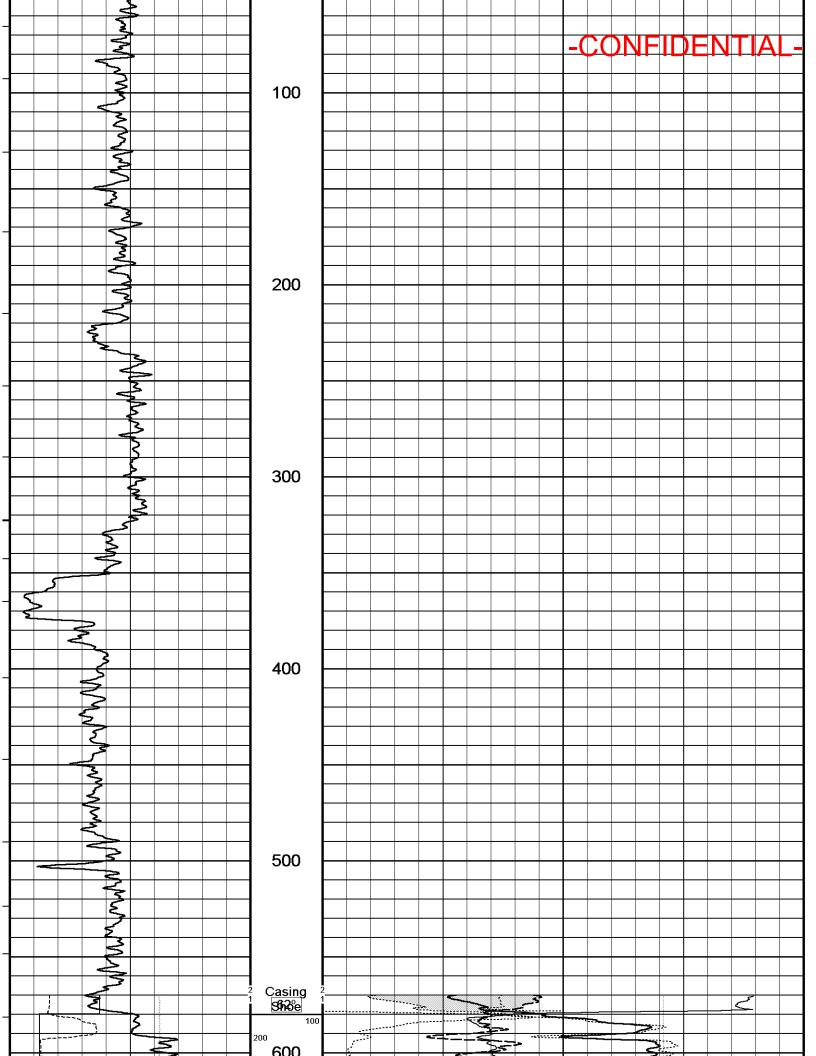
Software: WLS 13.05.9583

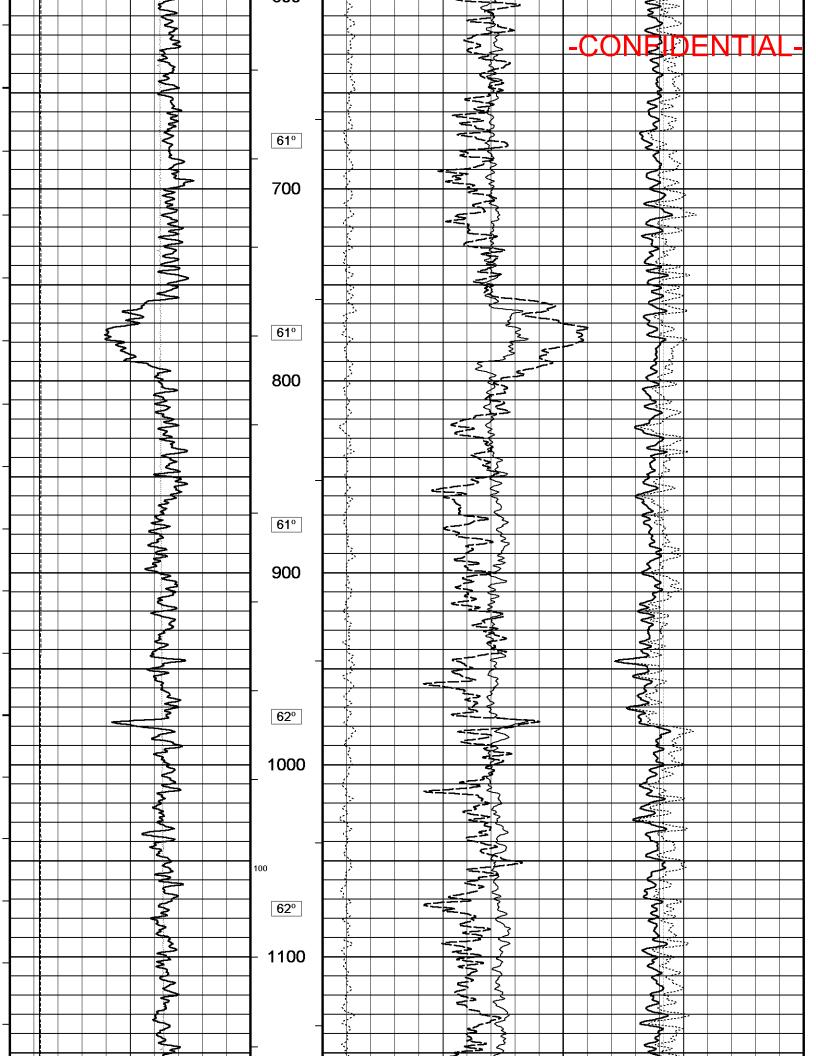
Tools Run 1: MBE, MBE, SHA, MCG, MDN, MPD, MFE, MUG, MDL, MLG, BHT

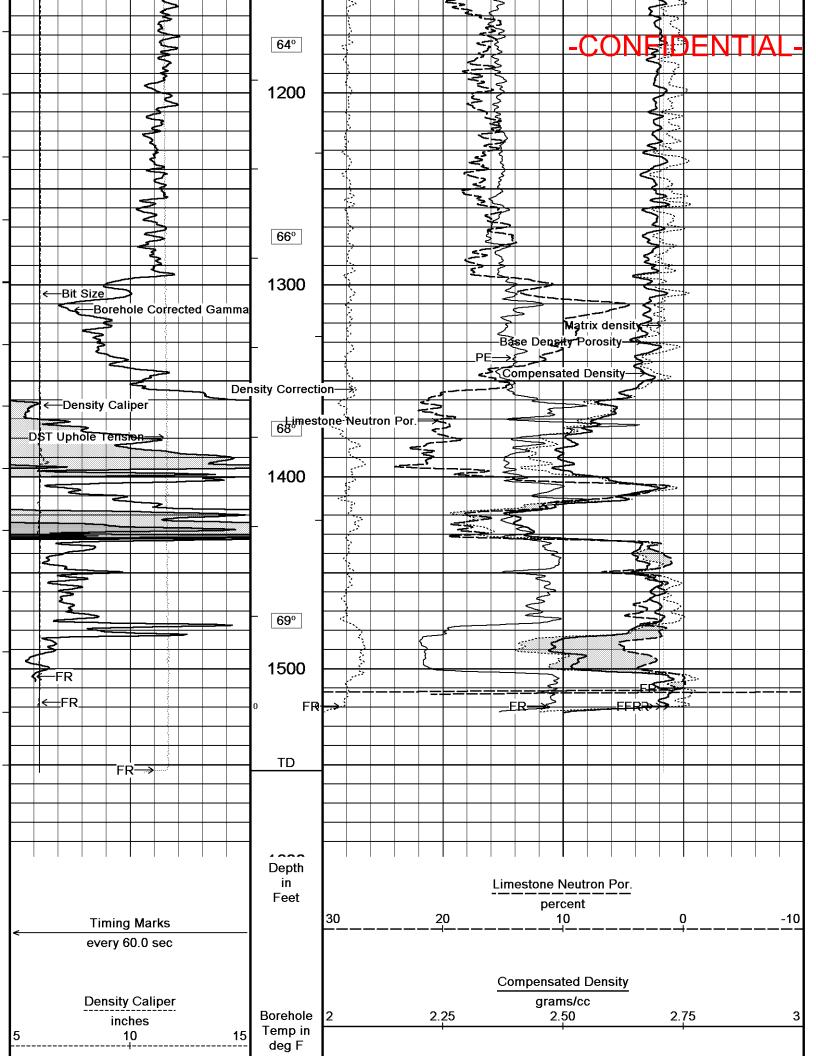
Hardware: MDN - Dual Eccentraliser

MDL - Two-1 Inch Standoffs MPD - Two Roll over subs

Density Matrix was ran on 2.71 gg/cc

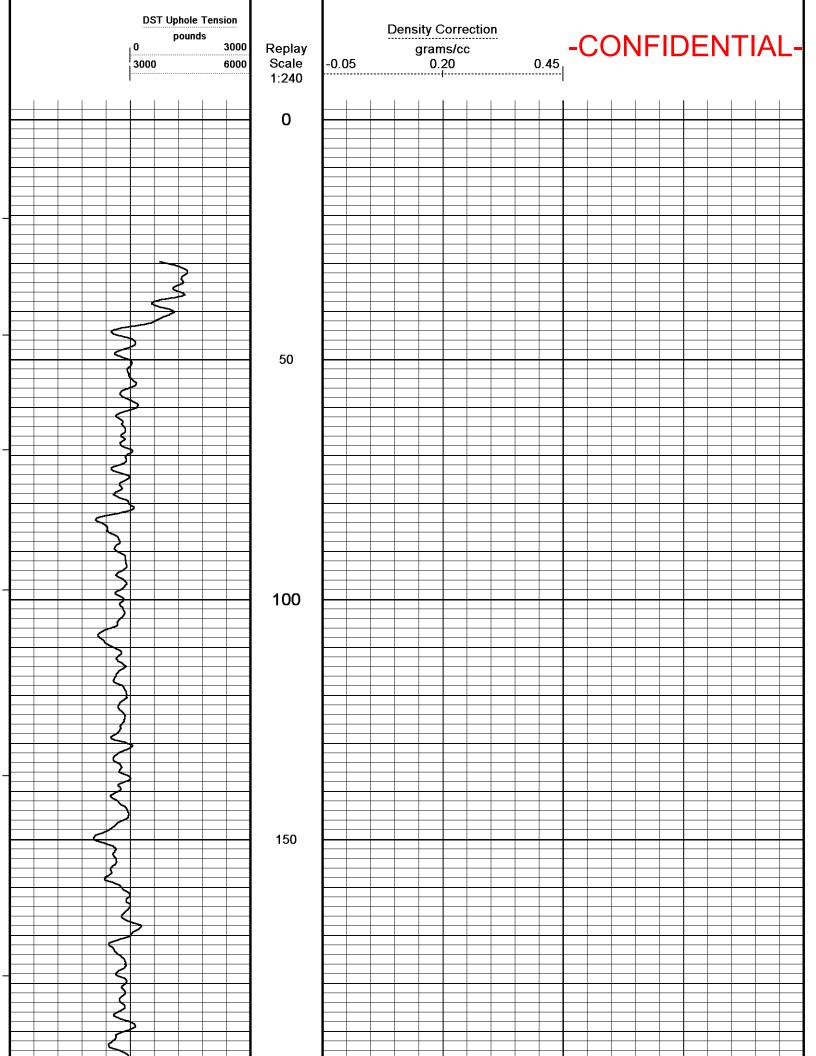

Crew: Nibras Nureldin Bruce Clark Gary Cronin Sebastian Londono Gamma ray spikes up at the bottom of the borehole because the gamma ray sub ran below the sources 4.5 inch casing was used to calculate annular hole volumes Gamma ray was recorded to ground level

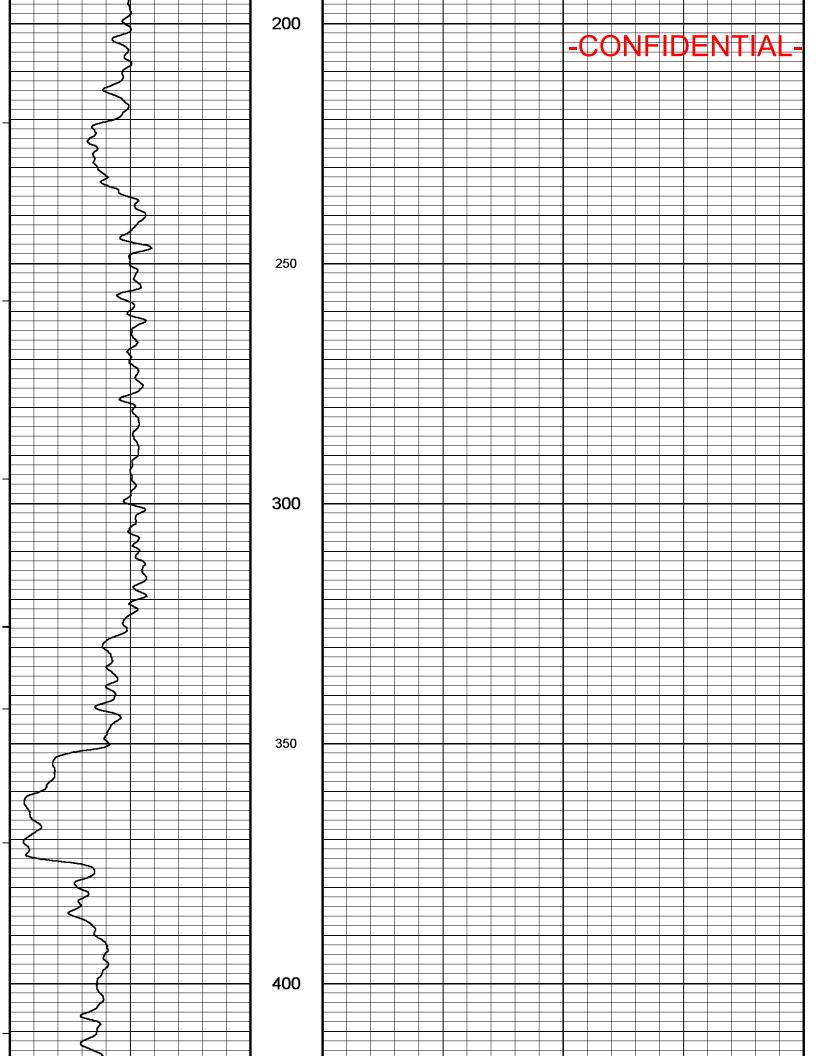

No Mud report was found on location. 100% Brine was added to the well that had 10% brine water in the well.

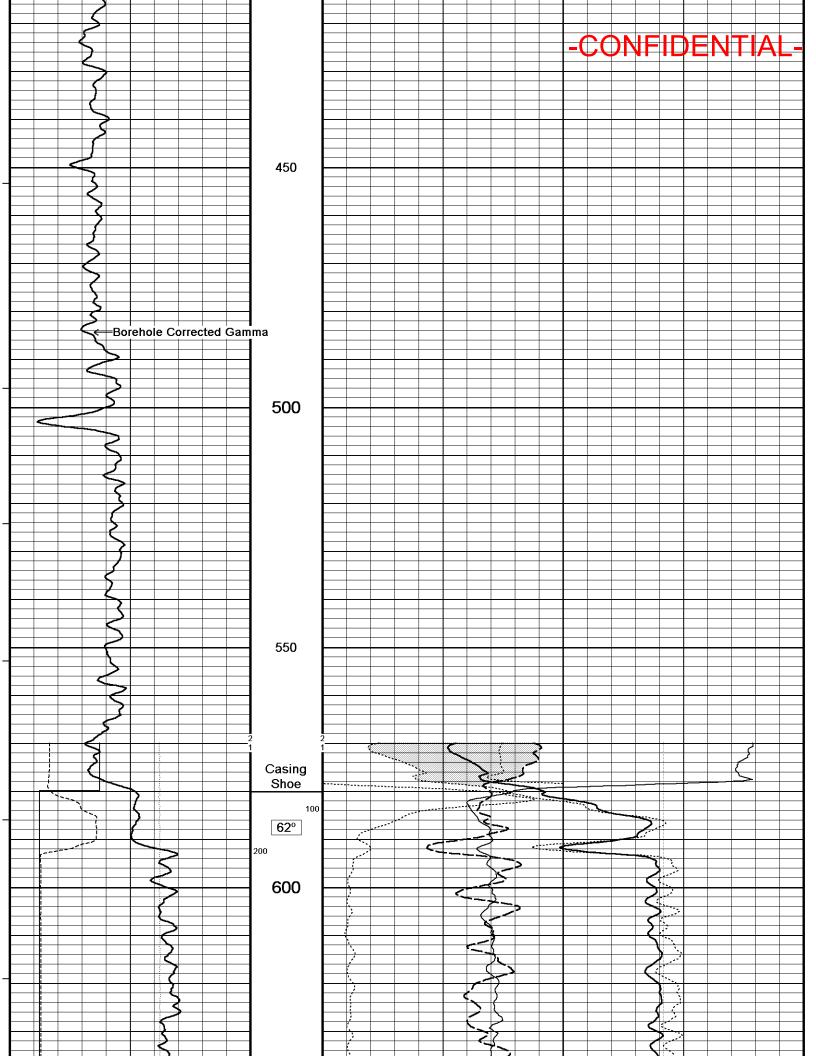

Mud Density is 9.5 lbs/USg

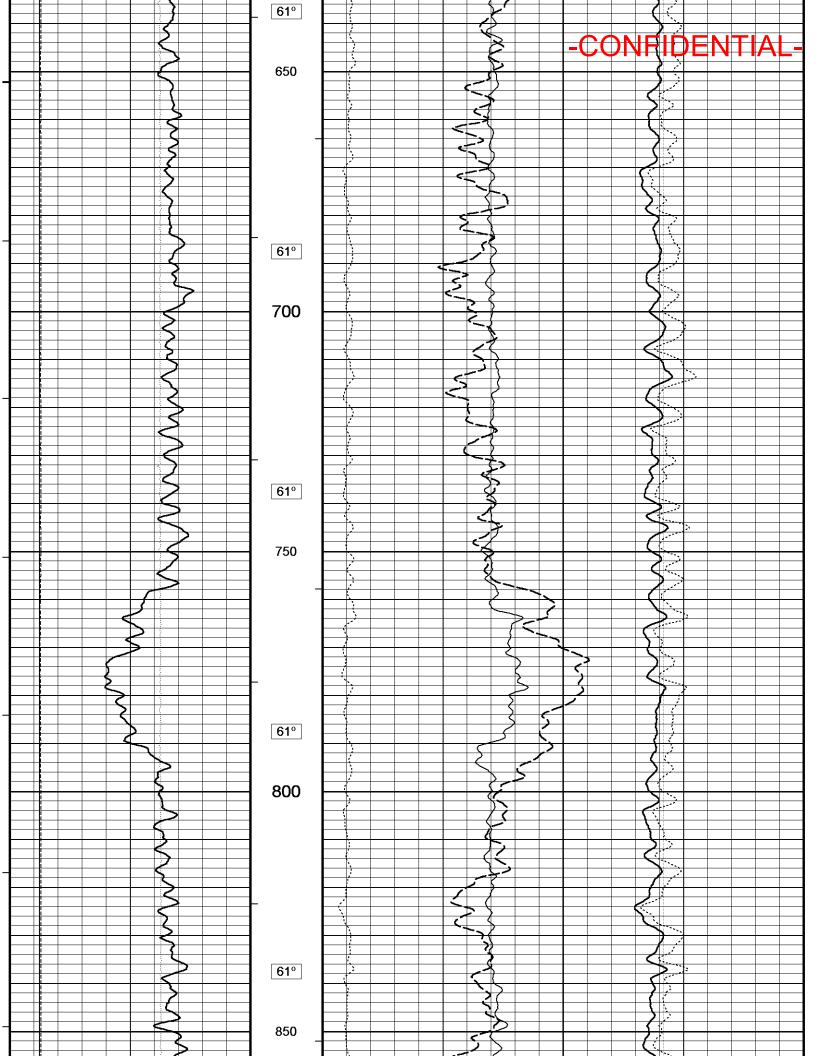
All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not, guarantee the accuracy or correctness of any interpretations, and we shall not, except in the case of gross or wilful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions in our price schedule.

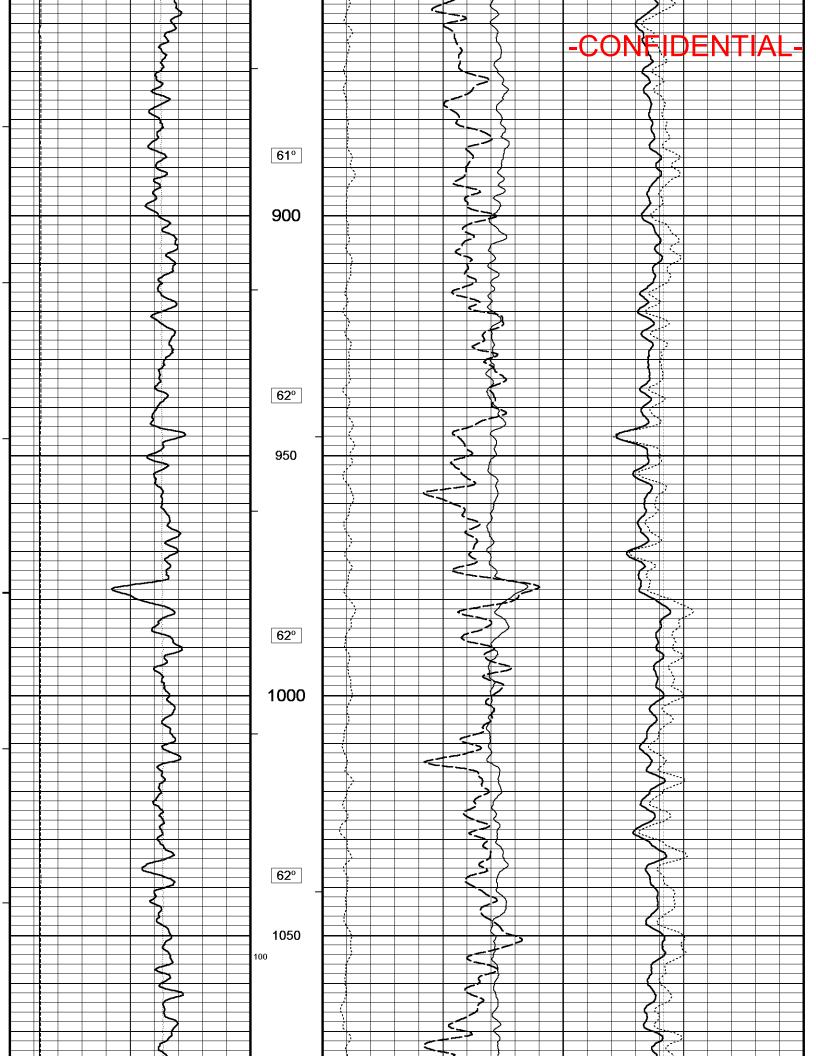
\checkmark		2 Inch Main Log 🗸 🗸 🗸
Depth Based Data - Maximum Sampling Ind Filename: C:\Logs\Cargill Inc\Cargill 18\\C System Versions: Logged with 13.05.9583	Cargill Inc_Ca	Cargill 18_Run_3 Triple_3531404_Main Pass.dta
Timing Marks every 60.0 sec	Depth in Feet	Limestone Neutron Por. percent 30 20 10 0 -10
Density Caliper inches 5 10 15	Borehole Temp in deg F	
Borehole Corrected Gamma API 0 100 200	HVI every ≰10 cu ft	PE barns/electron 0 2.50 5 7.50 10
200 300 400 Bit Size	Annular Integral every	
inches 5 10 15	10 cu ft	Matrix density grams/cc 2 2.25 2.50 2.75 3
DST Uphole Tension pounds 0 3000 3000 6000	Replay Scale 1:600	Density Correction grams/cc -0.05 0.20 0.45
	0	

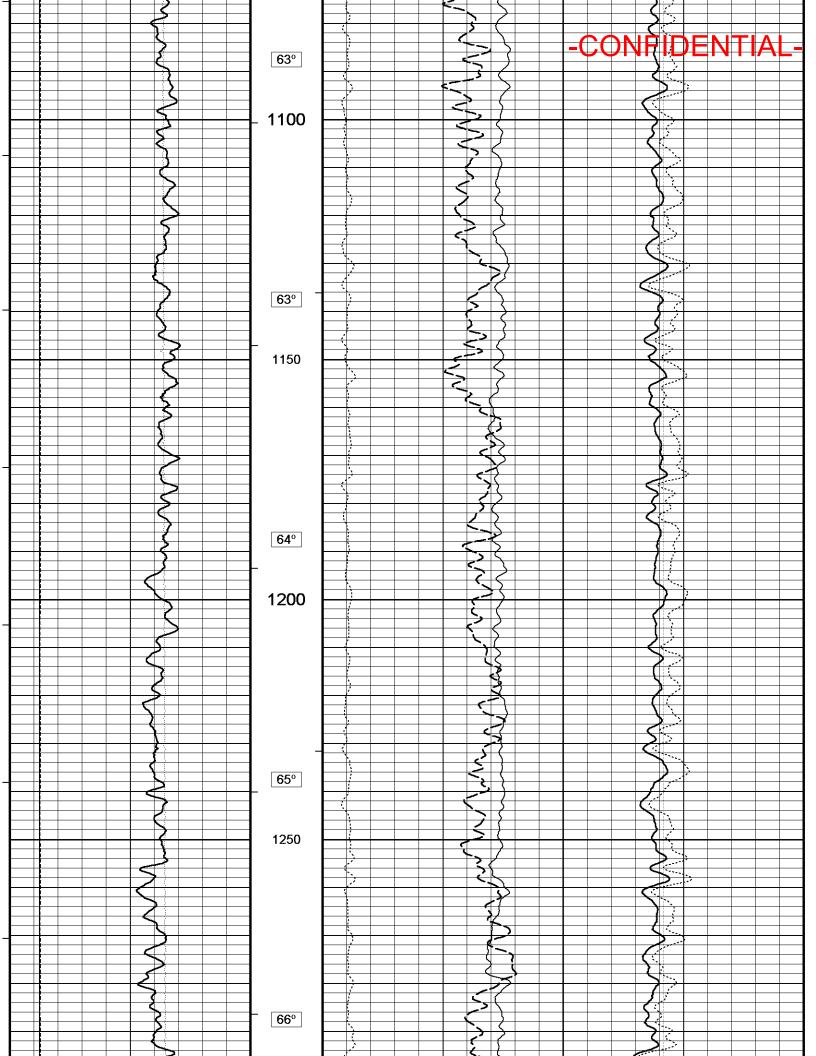


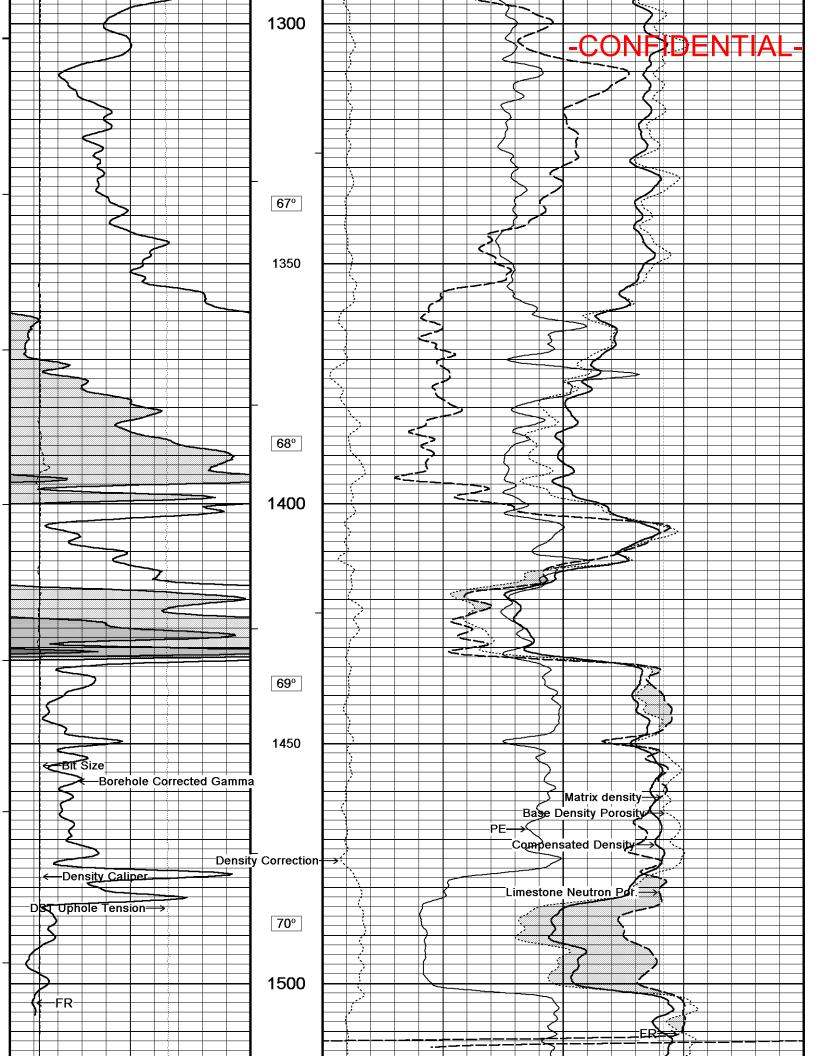


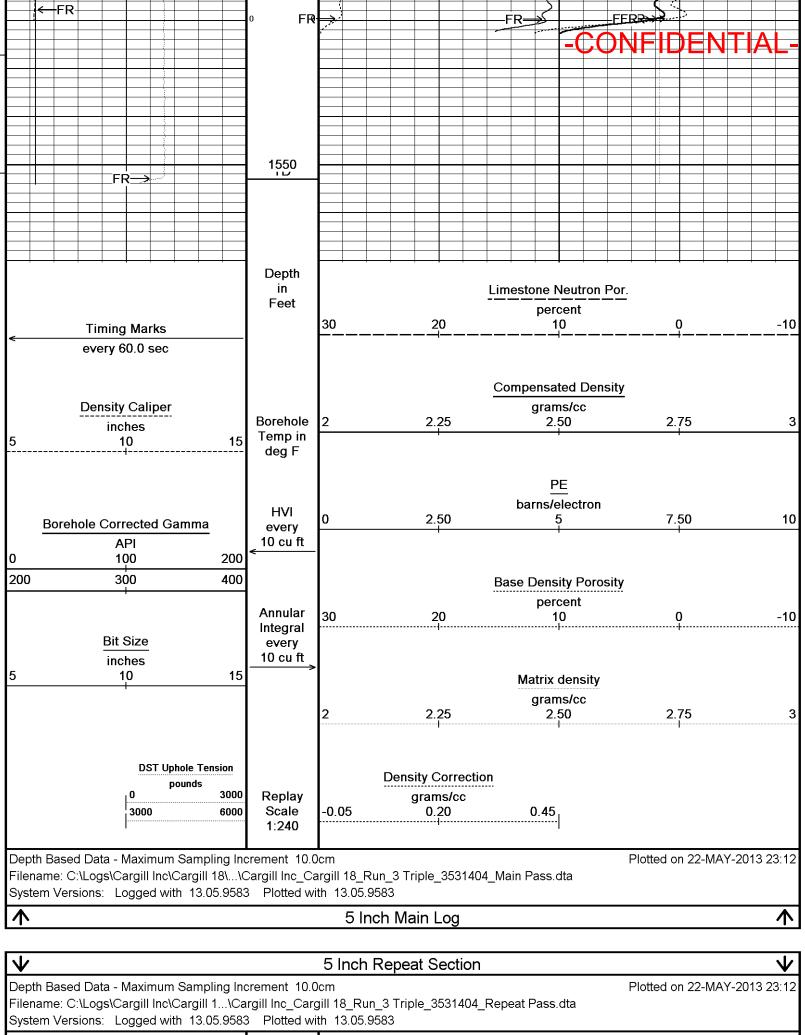


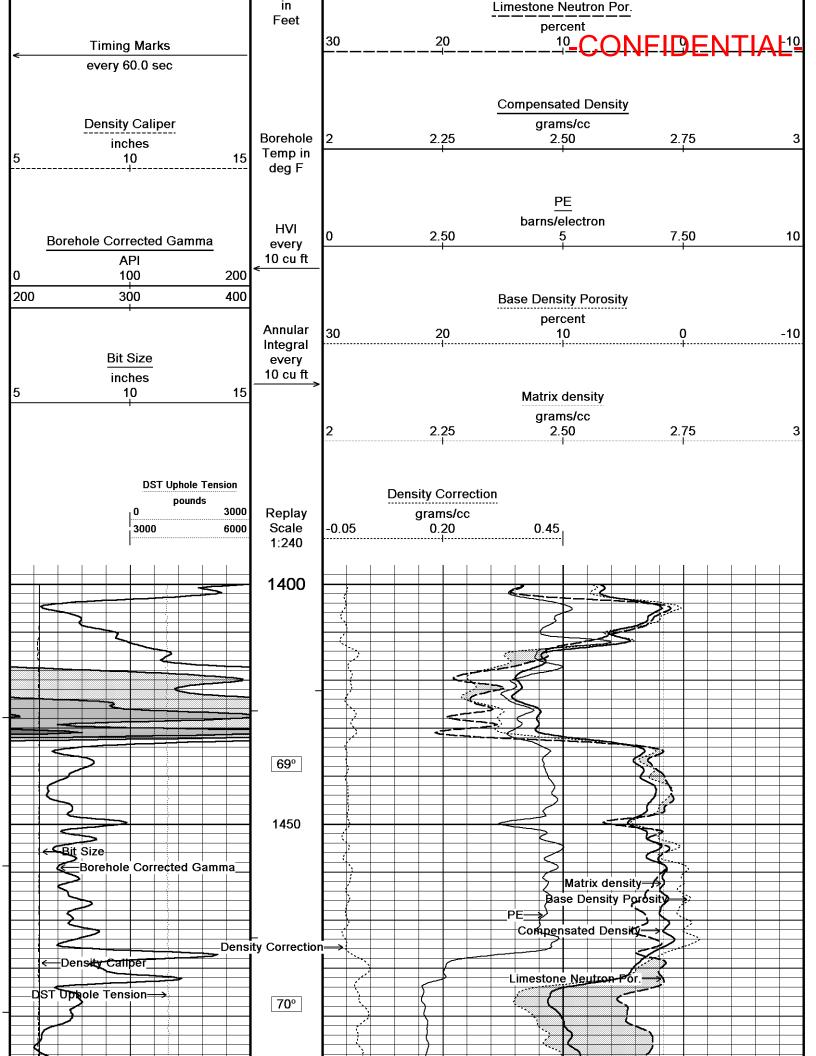

	Borehole Corrected Gamma	200	HVI every 10 cu ft	0	2.50	Darns/elegtron	DNFI<u>Ŗ</u>EN	ΓΙΑĻ _ō
0 200	100	200 400						
200	300	400				Base Density Poros	sity	
			Annular Integral	30	20	percent 10	0	-10
5	Bit Size inches 10	15	every 10 cu ft			Matrix density		
-						grams/cc		
				2	2.25	2.50	2.75	3
	DST Uphole Tens pounds	sion			Density Correction		I	
		3000	Replay		grams/cc			
	3000	6000	Scale 1:600	-0.05	0.20	0.45		
Filena	Based Data - Maximum Samplin me: C:\Logs\Cargill Inc\Cargill 1 n Versions: Logged with 13.05	8\\C	argill Inc_Ca	argill 18_F		Main Pass.dta	Plotted on 22-MAY-	2013 23:12
				2 Ir	nch Main Log			$\mathbf{\Lambda}$

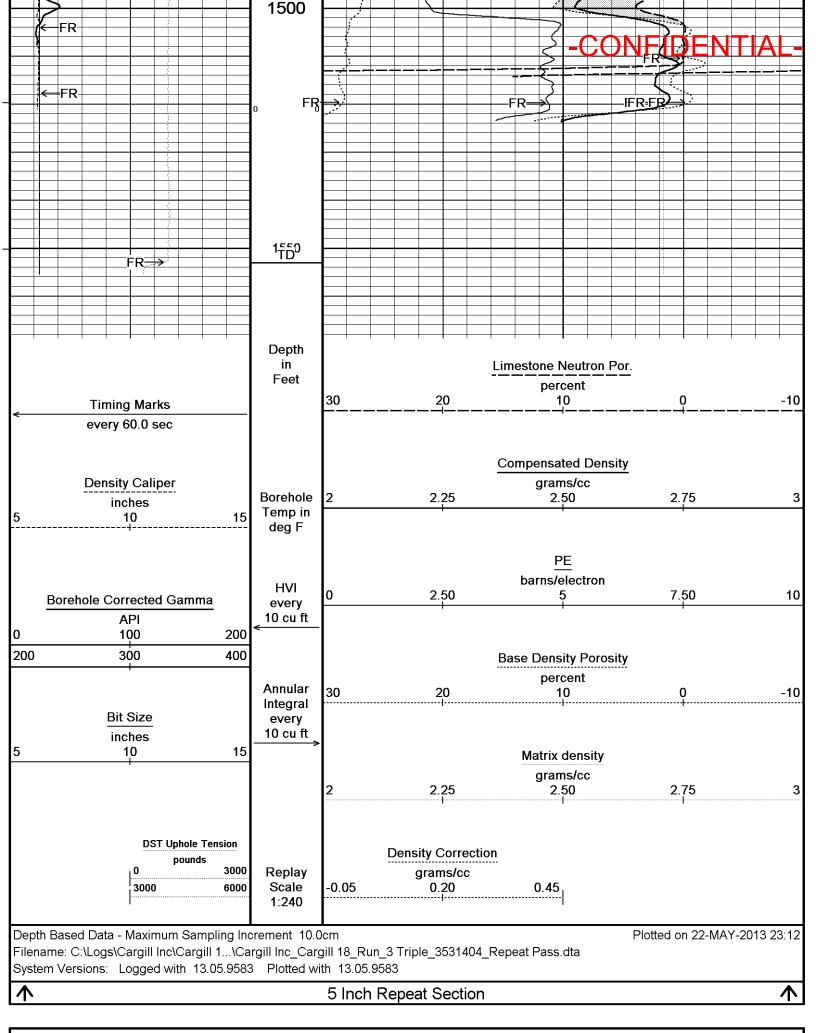

\checkmark		5 Inc	ch Main Log			\checkmark
Depth Based Data - Maximum Sampling Inc Filename: C:\Logs\Cargill Inc\Cargill 18\\C System Versions: Logged with 13.05.9583	cargill Inc_Ca	argill 18_Ru		Main Pass.dta	Plotted on 22-MAY	-2013 23:12
Timing Marks every 60.0 sec	Depth in Feet	30	20	imestone Neutron Popercent	or. 0	-10
Density Caliper inches 5 10 15	Borehole Temp in deg F	2	2.25	Compensated Densit grams/cc 2.50	<u>y</u> 2.75	3
Borehole Corrected Gamma API	HVI every 10 cu ft	0	2.50	PE barns/electron 5	7.50	10
Bit Size	Annular Integral	30	20	Base Density Porosit percent 10	<u>y</u> Q	-10
	every 10 cu ft >	Matrix density grams/cc 2 2.25 2.50 2.75 3				



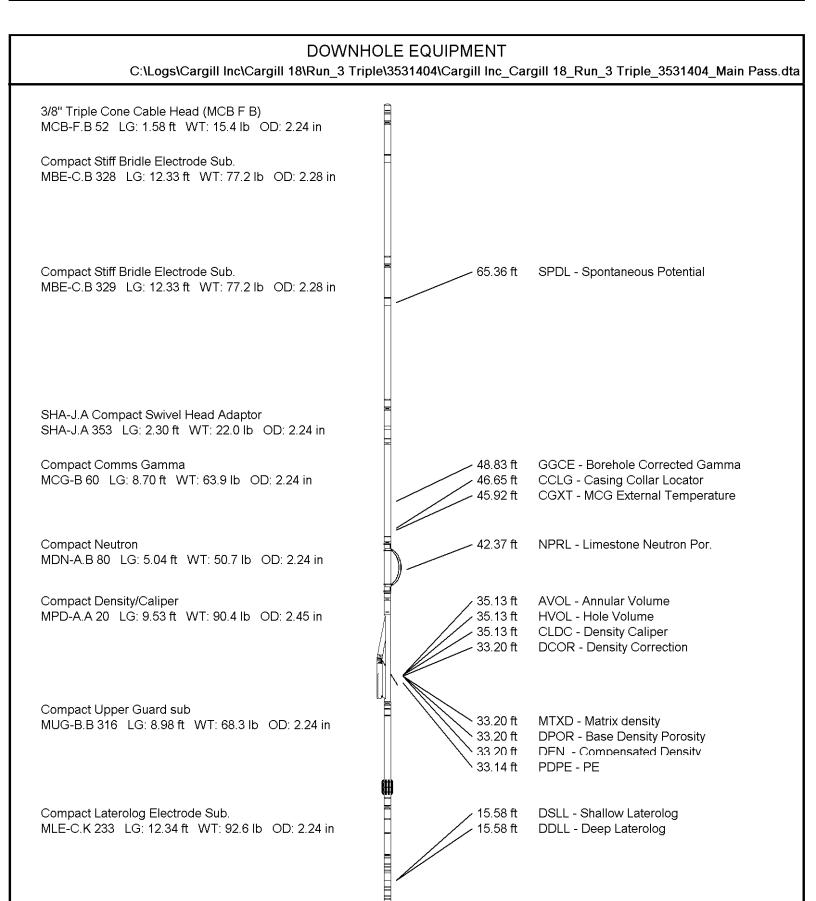








Depth


BEFORE SURVEY CALIBRATION

C:\Logs\Cargill Inc\Cargill 18\Run_3 Triple\3531404\Cargill Inc_Cargill 18_Run_3 Triple_3531404_Main Pass.dta

	netCargin totkun_5 tripie	e155514041Cargin Inc_C	argill 18_Run_3 Triple_3531404_Main Pass.dta
General Constants All 000			Last Edited on 22-MAY-2013,15:40
General Parameters Mud Resistivity Mud Resistivity Temperature Water Level Borehole Fluid Processing	0.054 78.000 0.000 Water Level Switch	ohm-metres degrees F feet	
Hole/Annular Volume and Differe HVOL Method HVOL Caliper 1 HVOL Caliper 2 Annular Volume Diameter Caliper for Differential Caliper	ntial Caliper Parameters Single Caliper Density Caliper N/A 4.500 Density Caliper	inches	
Rwa Parameters Porosity used Resistivity used RWA Constant A RWA Constant M SW/APOR Tool Source	Base Density Porosity Deep Laterolog 0.610 2.150 0.000		
Gamma Calibration MCG-B 60			Field Calibration on 21-MAY-2013 09:51
Background Calibrator (Gross) Calibrator (Net)	Measured 78 2255 2177	Calibrated (API) 55 1594 1539	
Gamma Constants MCG-B 60			Last Edited on 18-MAY-2013,20:47
Gamma Calibrator Number Mud Density Caliper Source for Processing Tool Position Concentration of KCI K Mud Type K Mud Concentration	45 1.03 Density Caliper Eccentred Chloride 0.00	gm/cc kppm %	
High Resolution Temperature Ca	libration MCG-B 60		
Lower Upper	Measured 60.00 101.00	Calibrated(Deg F) 60.00 100.00	Field Calibration on 24-APR-2013,11:52
High Resolution Temperature Co	nstants MCG-B 60		Last Edited on 24-APR-2013,11:52
Pre-filter Length	11		
Neutron Calibration MDN-A.B 80			Base Calibration on 24-APR-2013,12:07 Field Check on 21-MAY-2013 09:37
Base Calibration	Measured Near Far 3504 108	Calibrated (cps) Near Far 3714 110	
Ratio	32.559	33.764	
Field Calibrator at Base		Calibrated (cps) 1457 2097	
Ratio		0.695	
Field Check		Calibrated (cps) 1211 1819	
Ratio		0.666	
Neutron Constants MDN-A.B 80			Last Edited on 22-MAY-2013,14:46
Neutron Source Id Neutron Jig Number Epithermal Neutron Caliper Source for Processing	P0197NN 50656N No Density Caliper		

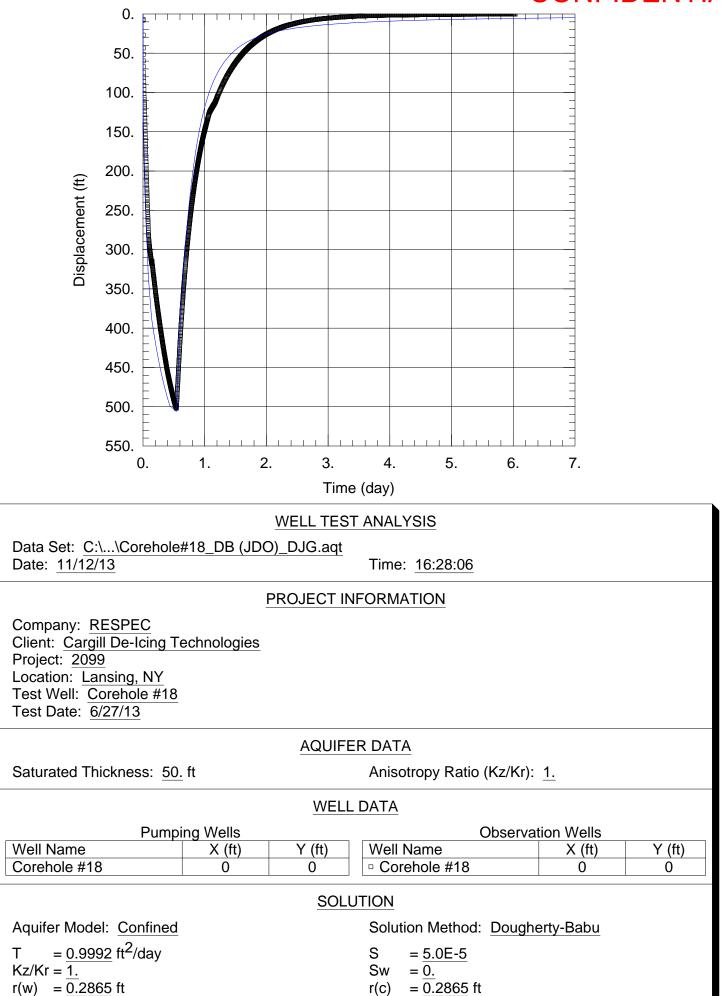
Stand-off			0.00			
Mud Density			1.03	<u> </u>	/cc	
Limestone Sigma Sandstone Sigma			7.10 4.26			-CONFIDENTIAL-
Dolomite Sigma			4.70			
Formation Pressure S	Source		Constant Value			
Formation Pressure			0.00		i	
Temperature Source			Constant Value		Г	
Temperature Mud Salinity			68.00 0.00		rees F	
Salinity Correction			Not Applied		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Formation Fluid Salin	ity Source	e	Constant Value			
Formation Fluid Salin			0.00		m	
Barite Mud Correction	ו		Not Applied			
Caliper Calibration MF	PD-A.A 20	D				Base Calibration on 14-MAY-2013 15:42 Field Calibration on 21-MAY-2013 09:19
Base Calibration				·	e : (;)	
Reading No		N	leasured 25425	Calibrato	r Size (in) 6.03	
2			35728		7.99	
3			45344		9.85	
4			55749		11.82	
5			0		0.00	
6			N/A		N/A	
Field Calibration			(i.e. , (i.e.)	A	- 1: (:)	
	M	easured Ca	6.06	Actual C	aliper (in) 6.03	
			0.00		0.05	
Photo Density Calibrati	ion MPC)-A.A 20				Base Calibration on 14-MAY-2013 15:29 Field Check on 21-MAY-2013 09:25
Density Calibration Base Calibration		N	leasured	Calibr	ated (sdu)	
Base Calibration		Near	Far	Near	Far	
Reference 1		42764	15583	53453	19407	
Reference 2		20333	2614	25381	2580	
Field Check at Bas	e					
		1286.4	1488.0			
Field Check						
T IEIG Offeck		1293.4	1484.9			
		1200.1	1101.0			
PE Calibration						
Base Calibration			sured	(Calibrated	
	WS	WF			Ratio	
Background	232	114(0.000	
Reference 1 Reference 2	14360 5518	42576 20178			0.320 0.274	
Reference Z	0010	20170	0 U.ZIO		U.2/4	
Field Check at Bas	e					
	232.2	1139.7	7			
Field Check						
	235.9	1148.2	2			
Density Constants MP	PD-A.A 20)				Last Edited on 15-MAY-2013,08:31
Density Source Id			21145B	I.		
Nylon Calibrator Num	ber		DNC-D-520			
Aluminium Calibrator			DAC-D-520			
Density Shoe Profile			8 inch			
Caliper Source for Pro	-		Density Caliper			
PE Correction to Dens	sity		Not Applied		(
Mud Density	inline		1.02	~	rcc	
Mud Density Z/A Mult Mud Filtrate Density	ipiler		1.11 1.00			
Dry Hole Mud Filtrate	Density		0.70	•		
DNCT	Lonony		0.00			
CRCT			0.00	~		
Doncity 7/A Correctio	0		Llubrid	-		

Density ZIA Correction	пурна
Matrix Density (gm/cc)	Depth (ft)
2.71	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00

Compact Lower Guard Sub. MLG-A 36 LG: 8.00 ft WT: 55.1 lb OD: 2.24 in

Compact High Resolution Temperature MHT-A 15 LG: 1.53 ft WT: 13.2 lb OD: 2.24 in

Total Length: 82.65 ft Weight: 626.1 lb


-CONFIDENTIAL-

Tool Zero(0.13ft from bottom)-0.13 ftSMTU - DST Uphole TensionAll measurements relative to tool zero.

COMPANY		Cargill, Inc.			
WELL		Cargill 18			
FIELD		Lansing			
PROVINCE/COU	INTY	Tompkins Cour	nty		
COUNTRY/STAT	ΓE	U.S.A. / New Yo	ork		
Elevation Kelly Bushing	752.16	feet	First Reading	1553.00	feet
Elevation Drill Floor	752.16	feet	Depth Driller	1550.00	feet
Elevation Ground Level	748.16	feet	Depth Logger	1553.00	feet
Weather	ford	Photo Density Compensate Gamma Ray	d Neutron		

APPENDIX D

AQTESOLV SOLUTION DATA

-CONFIDENTIAL-

Data Set: C:\Users\david.gnage\Documents\PROJECTS\1803-03_Cargill_Cayuga\2099_Corehole Oversight\Repord Date: 11/12/13 Time: 16:29:09

PROJECT INFORMATION

Company: RESPEC Client: Cargill De-Icing Technologies Project: 2099 Location: Lansing, NY Test Date: 6/27/13 Test Well: Corehole #18

AQUIFER DATA

Saturated Thickness: 50. ft Anisotropy Ratio (Kz/Kr): 1.

PUMPING WELL DATA

No. of pumping wells: 1

Pumping Well No. 1: Corehole #18

X Location: 0. ft Y Location: 0. ft

Casing Radius: 0.2865 ft Well Radius: 0.2865 ft

Fully Penetrating Well

No. of pumping periods: 9

Pumping Period Data					
Time (day)	Rate (gal/min)	Time (day)	Rate (gal/min)		
0.	30.	0.08542	3.5		
0.004861	15.	0.141	3.		
0.00625	10.	0.4375	2.75		
0.007986	5.5	0.5417	0.		
0.03264	4.5				

OBSERVATION WELL DATA

No. of observation wells: 1

Observation Well No. 1: Corehole #18

X Location: 0. ft Y Location: 0. ft

Radial distance from Corehole #18: 0. ft

Fully Penetrating Well

No. of Observations: 1299

Observation Data					
Time (day)	Displacement (ft)	Time (day)	Displacement (ft)		
0.00139	6.64	0.9042	184.		
0.00278	7.894	0.9056	183.4		
0.00417	26.88	0.9069	182.9		
0.00556	43.39	0.9083	182.3		
0.00694	51.45	0.9097	181.7		
0.00833	59.74	0.9111	181.1		
0.00972	67.27	0.9125	180.5		
0.01111	74.76	0.9139	179.9		

Time (day)	Displacement (ft)	Time (day)	Displacement (ft)
0.0125	80.45	0.9153	179.3
0.01389	85.92	0.9167	178.7
0.01528	90.92	0.9181	178.2
0.01667	96.15	0.9194	177.6
0.01806	101.1	0.9208	177.
0.01944	106.3	0.9222	176.4
0.02083	109.3	0.9236	175.9
0.02222	112.4	0.925	175.3
0.02361	114.9	0.9264	174.7
0.025	117.3	0.9278	174.1
0.02639	119.8	0.9292	173.6
0.02778	124.1	0.9306	173.
0.02917	128.3	0.9319	172.5
0.03056	132.6	0.9333	172.1
0.03194	136.3	0.9347	171.4
0.03333	140.7	0.9361	170.8
0.03472	144.9	0.9375	170.4
0.03611	149.1	0.9389	169.8
0.0375	153.3	0.9403	169.3
0.03889	157.3	0.9417	168.7
0.04028	161.3	0.9431	168.2
0.04167	165.5	0.9444	167.6
0.04306	169.3	0.9458	167.2
0.04444	173.1	0.9472	166.5
0.04583	176.8	0.9486	166.1
0.04722	180.5	0.95	165.6
0.04861 0.05	184.4 188.1 192.6	0.9514 0.9528	165. 164.5 164.
0.05139 0.05278 0.05417	192.6 196.3 199.8	0.9542 0.9556 0.9569	163.5 162.9
0.05556	203.3	0.9583	162.4
0.05694	206.8	0.9597	161.9
0.05833	210.2	0.9611	161.4
0.05972	213.6	0.9625	160.9
0.06111	217.1	0.9639	160.5
0.0625	220.5	0.9653	159.9
0.06389	223.7	0.9667	159.4
0.06528	227.1	0.9681	158.9
0.06667	230.3	0.9694	158.4
0.06806	233.5	0.9708	157.9
0.06944	236.6	0.9722	157.5
0.07083	239.8	0.9736	156.9
0.07222	243.	0.975	156.5
0.07361	246.	0.9764	156.1
0.075	249.1	0.9778	155.6
0.07639	252.2	0.9792	155.1
0.07778	255.1	0.9806	154.6
0.07917	258.2	0.9819	154.2
0.08056	260.9	0.9833	153.8
0.08194	263.9	0.9847	153.2
0.08333	266.8	0.9861	152.7
0.08472	269.7	0.9875	152.3
0.08611	272.6	0.9889	151.9
0.0875	275.4	0.9903	151.4
0.08889	278.4	0.9917	151.
0.09028	281.4	0.9931	150.5
0.09167	282.2	0.9944	150.
0.09306	283.8	0.9958	149.6
0.09444	285.2	0.9972	149.2
0.09583	286.8	0.9986	148.7
0.09722	288.4	1.	148.3
0.09861	289.9	1.001	147.8
0.1	291.4	1.003	147.3
0.1014	292.8	1.004	146.9
0.1028	293.7	1.006	146.5

Time (day)	Displacement (ft)	Time (day)	Dicplocoment (ft)
Time (day) 0.1042	Displacement (ft) 294.9	Time (day) 1.007	Displacement (ft) 146.1
0.1056 0.1069	295.8 296.8	1.008 1.01	145.6 145.2
0.1083	290.0	1.011	144.7
0.1097	298.6	1.013	144.3
0.1111 0.1125	299.7 300.6	1.014 1.015	143.9 143.5
0.1139	301.4	1.017	143.1
0.1153 0.1167	302.4 303.1	1.018 1.019	142.7 142.3
0.1181	304.	1.021	141.9
0.1194	304.8 305.7	1.022 1.024	141.4 141.
0.1208 0.1222	306.6	1.024	140.5
0.1236	307.5	1.026	140.1
0.125 0.1264	308.3 309.1	1.028 1.029	139.6 139.2
0.1278	310.	1.031	139.2 138.7
0.1292 0.1306	310.7 311.6	1.032 1.033	138.3 137.9
0.1319	312.4	1.035	137.5
0.1333 0.1347	313.2 314.1	1.036 1.038	137. 136.7
0.1361	315.	1.039	136.2
0.1375 0.1389	315.8 316.8	1.04 1.042	135.8 135.4
0.1403	317.6	1.045	134.4
0.1417 0.1431	318.2 317.2	1.049	133.5 133.5
0.1444	315.9	1.052 1.056	131.4
0.1458 0.1472	314.6 315.2	1.059 1.063	130.4
0.1486	316.4	1.066	129.4 128.4
0.15 0.1514	317.6 318.6	1.069 1.073	127.5
0.1528	318.6 319.8	1.076	126.6 125.6
0.1542 0.1556	320.8 321.9	1.08 1.083	124.9 124.4
0.1569	322.9	1.087	123.9
0.1583 0.1597	324. 324.9	1.09 1.094	123.4 122.9
0.1611	326.	1.097	122.9 122.4
0.1625 0.1639	326.8 327.9	1.101 1.104	122. 121 4
0.1653	328.7	1.108	121.4 121.
0.1667 0.1681	329.5 330.6	1.111 1.115	120.5 120.
0.1694	331.5	1.118	119.6
0.1708	332.3 333.2	1.122 1.125	119.1 118.6
0.1722 0.1736	334.	1.128	118.6 118.1
0.175 0.1764	334.9 335.8	1.132 1.135	117.7 117.2
0.1778	336.7	1.139	116.8
0.1792 0.1806	337.6 338.6	1.142 1.146	116.3 115.9
0.1819	339.5	1.149	115.4
0.1833	340.6	1.153	115. 114.6
0.1847 0.1861	341.4 342.1	1.156 1.16	114.
0.1875	343.1 344.1	1.163 1.167	113.5 113.
0.1889 0.1903	345.	1.17	112.5
0.1917	345.9 346.7	1.174 1.177	111.9 111.3
0.1931 0.1944	340.7	1.181	110.6

<u>Time (day)</u>	Displacement (ft)	Time (day)	Displacement (ft)
0.1958	348.4	1.184	109.7
0.1972	349.3	1.188	109.1
0.1986	350.3	1.191	108.3
0.2	351.5	1.194	107.6
0.2014	352.8	1.198	106.9
0.2028	353.5	1.201	106.2
0.2042	354.4	1.205	105.5
0.2056	355.4	1.208	104.8
0.2069	356.1	1.215	103.5
0.2083	357.1	1.222	102.1
0.2097	357.8	1.229	100.8
0.2111	358.7	1.236	99.55
0.2125	359.7	1.243	98.27
0.2139	360.4	1.25	97.02
0.2153 0.2167	361.2 362.	1.257 1.264 1.271	95.87 94.67
0.2181	363.1	1.271	93.36
0.2194	363.9	1.278	92.28
0.2208	364.6	1.285	91.12
0.2222	365.5	1.292	89.95
0.2236	366.4	1.299	88.85
0.225	367.2	1.306	87.73
0.2264	368.	1.313	86.6
0.2278	368.8	1.319	85.57
0.2292	369.6	1.326	84.47
0.2306	370.5	1.333	83.4
0.2319	371.2	1.34	82.36
0.2333	371.9	1.347	81.34
0.2347	372.6	1.354	80.31
0.2361	373.6	1.361	79.3
0.2375	374.3	1.368	78.32
0.2389	375.2	1.375	77.32
0.2403	376.1	1.382	76.37
0.2417	376.9	1.389	75.45
0.2431	377.8	1.396	74.5
0.2444	378.6	1.403	73.55
0.2458	379.4	1.41	72.64
0.2472	380.2	1.417	71.76
0.2486	381.	1.424	70.96
0.25	381.8	1.431	70.08
0.25 0.2514 0.2528 0.2528	382.6 383.3	1.438 1.444	69.14 68.35
0.2542	384.	1.451	67.52
0.2556	384.7	1.458	66.65
0.2569	385.4	1.465	65.86
0.2583	386.3	1.472	65.06
0.2597	387.1	1.479	64.25
0.2611	387.9	1.486	63.46
0.2625	388.6	1.493	62.68
0.2639	389.4		61.91
0.2653 0.2667 0.2681	390.1 390.9 391.7	1.507 1.514 1.521 1.528	61.14 60.4 59.66
0.2694	392.4	1.528	58.95
0.2708	393.2	1.535	58.18
0.2722	393.9	1.542	57.51
0.2736	395.4	1.549	56.77
0.275	396.2	1.556	56.1
0.2764 0.2778 0.2792	396.9 397.6 398.3	1.563 1.569	55.5 54.84 54.17
0.2806 0.2819	399. 399.8	1.576 1.583 1.59	53.49 52.84
0.2833	400.5	1.597	52.19
0.2847	401.3	1.604	51.57
0.2861	402.	1.611	50.91

Time (day)	Displacement (ft)	Time (day)	Displacement (ft)
0.2875	402.7	1.618	50.26
0.2889 0.2903	403.5 404.1 404.9	1.625 1.632	49.66 49.05
0.2917	404.9	1.639	48.46
0.2931	405.6	1.646	47.85
0.2944	406.4	1.653	47.28
0.2958	407.1	1.66	46.71
0.2972	407.7	1.667	46.12
0.2986	408.5	1.674	45.58
0.3	409.2	1.681	45.05
0.3014	410.	1.688	44.51
0.3028	410.6	1.694	43.92
0.3042	411.4	1.701	43.41
0.3056	412.1	1.708	42.88
0.3069	412.8	1.715	42.34
0.3083	413.4	1.722	41.84
0.3097	414.2	1.729	41.33
0.3111	414.9	1.736	40.83
0.3125	415.6	1.743	40.32
0.3139 0.3153	416.3 417.1	1.743 1.75 1.757	40.32 39.84 39.35
0.3167	417.9	1.764	39.01
0.3181	418.7	1.771	38.41
0.3194	419.4	1.778	38.02
0.3208	420.	1.785	37.59
0.3222	420.7	1.792	37.11
0.3236	421.4	1.799	36.67
0.325 0.3264 0.2278	422.1 422.7	1.806 1.813	36.24 35.81
0.3278	423.4	1.819	35.35
0.3292	423.9	1.826	34.94
0.3306	424.5	1.833	34.52
0.3319	425.1	1.84	34.1
0.3333	425.7	1.847	33.71
0.3347	427.1	1.854	33.26
0.3361	427.7	1.861	32.86
0.3375	428.3	1.868	32.49
0.3389	429.	1.875	32.06
0.3403	429.5	1.882	31.71
0.3417	430.1	1.889	31.32
0.3431	430.9	1.896	30.93
0.3444	431.4	1.903	30.56
0.3458	432.	1.91	30.21
0.3472	432.7	1.917	29.87
0.3486	433.3	1.924	29.5
0.35	434.	1.931	29.11
0.3514	434.6	1.938	28.79
0.3528	435.2	1.944	28.44
0.3542	435.9	1.951	28.09
0.3556 0.3569 0.2592	436.5 437.2	1.958 1.965	27.75 27.4 27.09
0.3583	437.8	1.972	27.09
0.3597	438.4	1.979	26.81
0.3611	439.	1.986	26.45
0.3625 0.3639	439.7 440.5	1.993 2. 2.01	26.24
0.3653 0.3667	440.9 441.7	2.021	25.86 25.34 25.02
0.3681	442.2	2.031	24.56
0.3694	442.8	2.042	24.16
0.3708	443.4	2.052	23.72
0.3722	444.1	2.063	23.29
0.3736	444.8	2.073	22.86
0.3736	444.8	2.073	22.86
0.375	445.3	2.083	22.5
0.3764	445.9	2.094	22.08
0.3778	446.5	2.104	21.67

Time (day)	Displacement (ft)	Time (day)	Displacement (ft)
0.3792	447.1	2.115	21.28
0.3806	448.4	2.125	20.92
0.3819	448.9	2.135	20.55
0.3833	449.5	2.146	20.16
0.3847	450.1	2.156	19.82
0.3861	450.8	2.167	19.5
0.3875	451.5	2.177	19.14
0.3889	452.1	2.188	18.87
0.3903	452.6	2.198	18.63
0.3917	453.2	2.208	18.35
0.3931	453.7	2.219	18.
0.3944	454.3	2.229	17.6
0.3958	454.9	2.24	17.21
0.3972	455.3	2.25	16.93
0.3986	455.9	2.26	16.62
0.4 0.4014	456.4 456.9	2.271 2.281 2.292	16.34 16.08
0.4028	457.5	2.302	15.8
0.4042	458.		15.5
0.4056	458.7		15.24
0.4069 0.4083 0.4097	458.7 459.1 459.7 460.2	2.313 2.323 2.333 2.334	14.97 14.73 14.48
0.4111 0.4125	460.7 461.2	2.344 2.354 2.365	14.25 14.06
0.4139	461.8	2.375	13.83
0.4153	462.2	2.385	13.53
0.4167	462.7	2.396	13.43
0.4181	463.2	2.406	13.21
0.4194	463.7	2.417	12.84
0.4208	464.3	2.427	12.8
0.4222	464.9	2.438	12.67
0.4236	465.4	2.448	12.48
0.425	466.	2.458	12.19
0.4264	466.6	2.469	11.89
0.4278	467.1	2.479	11.73
0.4292	467.6	2.49	11.53
0.4306	468.2	2.5	11.3
0.4319	468.6	2.51	11.02
0.4333	469.	2.521	10.96
0.4347	469.5	2.531	10.77
0.4361	470.	2.542	10.56
0.4375	470.5	2.552	10.42
0.4389	471.	2.563	10.22
0.4403	471.4	2.573	10.07
0.4417	472.	2.583	9.882
0.4431	472.6	2.594	9.701
0.4444	473.2	2.604	9.599
0.4458	473.6	2.615	9.458
0.4472	474.1	2.625	9.244
0.4486	474.4	2.635	9.141
0.45	474.9	2.646	8.985
0.4514	475.5	2.656	8.859
0.4528	476.	2.667	8.694
0.4542	476.4	2.677	8.558
0.4556	476.9	2.688	8.414
0.4569	477.4	2.698	8.28
0.4583	477.8	2.708	8.126
0.4597	478.2	2.719	8.106
0.4611	478.6	2.729	7.869
0.4625	479.	2.74	7.725
0.4639	479.5	2.75	7.644
0.4653	479.9	2.76	7.534
0.4667	480.5	2.771	7.389
0.4681	481.	2.781	7.283
0.4694	481.7	2.792	7.187
01.001	10111	2.1.02	11107

Time (day)	Displacement (ft)	Time (day)	Displacement (ft)
0.4708	481.8	2.802	7.059
0.4722	482.3	2.813	6.938
0.4736	482.8	2.823	6.832
0.475	483.3	2.833	6.863
0.4764 0.4778 0.4792	483.7 484.2 484.6	2.844 2.854 2.865	6.734 6.536
0.4806 0.4819	484.0 485.1 485.6	2.805 2.875 2.885	6.448 6.289 6.308
0.4833	486.	2.896	6.144
0.4847	486.3	2.906	6.024
0.4861	486.8	2.917	6.062
0.4875	487.2	2.927	6.002
0.4889	487.5	2.938	5.877
0.4903	488.	2.948	5.679
0.4917 0.4931	488.5 488.9	2.958 2.969	5.577 5.517 5.536
0.4944	489.4	2.979	5.444
0.4958	489.8	2.99	
0.4972	490.3	3.	5.388
0.4986	490.8	3.01	5.288
0.5	491.3	3.021	5.228
0.5014	491.7	3.031	5.124
0.5028	492.1	3.042	5.084
0.5042	492.6	3.052	4.997
0.5056	492.9	3.063	4.931
0.5069	493.2	3.073	4.846
0.5083	493.5	3.083	4.786
0.5097	493.8	3.094	4.739
0.5111	494.3	3.104	4.675
0.5125 0.5139	494.3 494.5 494.9	3.104 3.115 3.125	4.075 4.593 4.526
0.5153 0.5153 0.5167	495.3 495.7	3.135 3.146	4.446 4.403
0.5181	496.1	3.156	4.361
0.5194	496.5	3.167	4.275
0.5208	497.	3.177	4.268
0.5222	497.4	3.188	4.157
0.5236	497.9	3 198	4.122
0.525	498.3		4.068
0.5264 0.5278	498.5 498.7	3.208 3.219 3.229	3.984 3.939
0.5292	499.	3.24	3.89
0.5306	499.2	3.25	3.813
0.5319	499.7	3.26	3.795
0.5333	500.	3.271	3.726
0.5347 0.5361 0.5375	500.4 500.8	3.281 3.292	3.665 3.648 2.576
0.5389 0.5403	501.1 501.5 501.9	3.302 3.313 3.323	3.576 3.528 3.479
0.5403 0.5417 0.5431	502.	3.333	3.479 3.44 3.375
0.5444 0.5458	500.3 498.4 496.4	3.344 3.354 3.365	3.375 3.337 3.311
0.5472 0.5486	494.6 492.7	3.375 3.385	3.237 3.223 3.177
0.55 0.5514	490.8 488.9	3.396 3.406 3.417	3.094
0.5528	486.8	3.427	3.064
0.5542	484.7		3.052
0.5556	482.7	3.438	2.997
0.5569	480.6	3.448	2.974
0.5583	478.6	3.458	2.92
0.5597	476.5	3.469	2.868
0.5611	474.4	3.479	2.833
0.0011	7/7.7	0.779	2.000

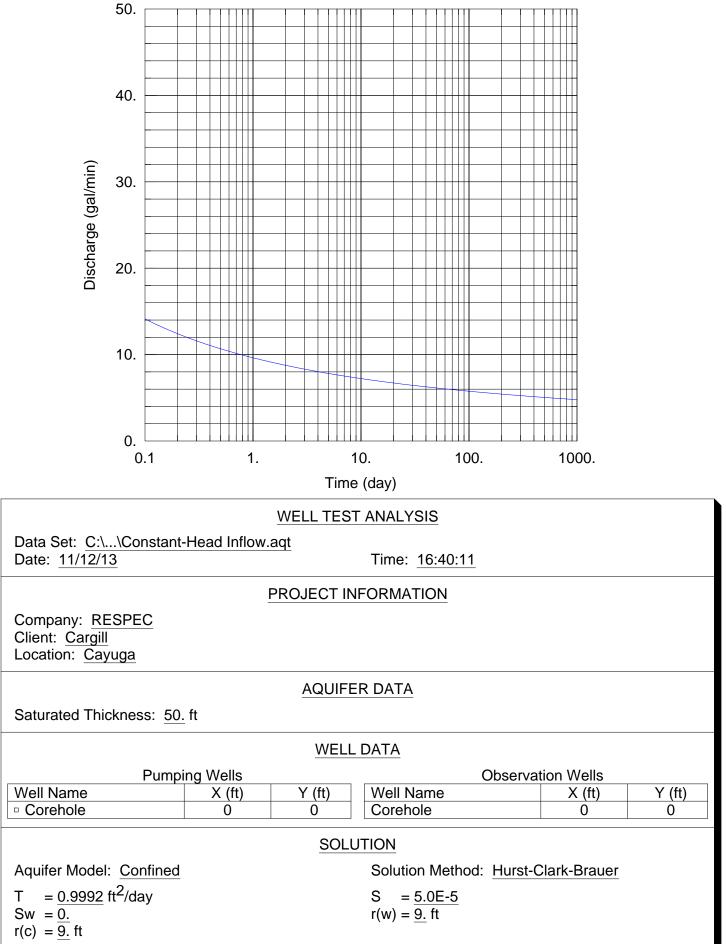
<u>Time (day)</u>	Displacement (ft)	<u>Time (day)</u>	Displacement (ft)
0.5625	472.4	3.49	2.796
0.5639	470.3	3.5	2.804
0.5653	468.1	3.51	2.736
0.5667	466.1	3.521	2.725
0.5681	464.1	3.531	2.685
0.5694	462.2	3.542	2.655
0.5708	460.1	3.552	2.593
0.5722	458.	3.563	2.582
0.5736	455.9	3.573	2.495
0.575	453.9	3.583	2.529
0.5764	451.8	3.594	2.469
0.5778	449.7	3.604	2.444
0.5792	447.8	3.615	2.409
0.5806	445.8	3.625	2.345
0.5819	443.7	3.635	2.322
0.5833	441.8	3.646	2.322
0.5847 0.5861	439.8 437.8	3.656 3.667	2.281 2.288 2.318
0.5875	435.8	3.677	2.318
0.5889	433.8	3.688	2.2
0.5903	431.7	3.698	2.181
0.5903 0.5917 0.5931	429.9 427.8	3.708 3.719	2.164 2.135 2.121
0.5944	425.9	3.729	2.098
0.5958	424.1	3.74	
0.5972	422.1	3.75	
0.5986 0.6	422.1 420.3 418.4	3.75 3.76 3.771	2.061 2.145 1.998
0.6014 0.6028	416.4 414.6	3.781 3.792	1.998 1.972 1.934
0.6042	412.7	3.802	2.059
0.6056	410.8	3.813	1.937
0.6069	409.1	3.823	1.874
0.6083	407.1	3.833	1.861
0.6097	405.4	3.844	1.878
0.6111	403.6	3.854	1.809
0.6125	401.9	3.865	1.9
0.6139	400.2	3.875	1.875
0.6153	398.5	3.885	1.774
0.6167	396.8	3.896	1.703
0.6181	395.1	3.906	1.68
0.6194	393.5	3.917	1.75
0.6208	391.8	3.927	1.7
0.6222	390.2	3.938	1.764
0.6236	388.5	3.948	1.599
0.625	386.9	3.958	1.568
0.6264	385.2	3.969	1.611
0.6278	383.6	3.979	1.558
0.6292	382.	3.99	1.563
0.6306	380.3	4.	1.539
0.6319	378.7	4.01	1.479
0.6333	377.2	4.021	1.505
0.6347	375.5	4.031	1.489
0.6361 0.6375	373.9 372.3 370.7	4.042 4.052	1.495 1.444 1.512
0.6389	370.7	4.063	1.512
0.6403	369.1	4.073	1.499
0.6417	367.6	4.083	1.405
0.6431	366.1	4.094	1.37
0.6444	364.4	4.104	1.349
0.6458	362.9	4.115	1.315
0.6472	361.4	4.125	1.451
0.6486	359.9	4.135	1.318
0.65	358.4	4.146	1.424
0.6514	356.9	4.156	1.32
0.6528	355.4	4.167	1.488

Time (day)	Displacement (ft)	Time (day)	Displacement (ft)
0.6542	354.	4.177	1.595
0.6556	352.4	4.188	
0.6569	351.	4.198	1.28
0.6583	349.5	4.208	1.371
0.6597	348.1	4.219	1.61
0.6611	346.7	4.229	1.637
0.6625	345.2	4.24	1.701
0.6639	343.8	4.25	1.345
0.6653	342.5	4.26	1.478
0.6667	341.1	4.271	1.492
0.6681	339.7	4.281	1.264
0.6694	338.2	4.292	1.257
0.6708	336.9	4.302	1.207
0.6722	335.6		1.203
0.6736 0.675	334.2 333.	4.313 4.323 4.333	1.18 1.18
0.6764	331.6	4.344	1.043
0.6778	330.3	4.354	1.11
0.6792	328.9	4.365	1.164
0.6806	327.6	4.375	1.098
0.6819	326.3	4.385	1.106
0.6833	325.	4.396	1.131
0.6847	323.8	4.406	1.118
0.6861	322.4	4.417	1.062
0.6875 0.6889	321.2 319.9 318.5	4.427 4.438	1.049 1.159
0.6903	317.3	4.448	1.282
0.6917		4.458	1.031
0.6931	316.2	4.469	0.888
0.6944	314.9	4.479	0.969
0.6958 0.6972	313.6 312.4 311.1	4.49 4.5	0.958 0.963
0.6986	310.	4.51 4.521	0.94 0.941
0.7014	308.7	4.531	0.93
0.7028	307.6	4.542	0.921
0.7042	306.4	4.552	0.918
0.7056	305.3	4.563	0.887
0.7069	304.1	4.573	0.882
0.7083	302.8	4.583	0.916
0.7097	301.8	4.594	0.849
0.7111	300.5	4.604	0.867
0.7125	299.4	4.615	0.864
0.7139 0.7153	299.4 298.3 297.1	4.615 4.625 4.635	0.838 0.833
0.7167 0.7181	297.1 295.9 294.7	4.635 4.646 4.656	0.833
0.7194 0.7208	294.7 293.7 292.5	4.650 4.667 4.677	0.798 0.791 0.781
0.7222 0.7236	292.3 291.4 290.3	4.677 4.688 4.698	0.779 0.815
0.725 0.7264	289.2 289.2 288.	4.708	0.754 0.767
0.7278 0.7292	287.1 285.9	4.719 4.729 4.74	0.791 0.757
0.7306	284.8	4.75	0.743
0.7319	283.7	4.76	0.717
0.7333	282.6	4.771	0.738
0.7347	281.7	4.781	0.697
0.7361	280.6	4.792	0.701
0.7375	279.5	4.802	0.678
0.7389	278.5	4.813	0.727
0.7403	277.4	4.823	0.706
0.7417	276.4	4.833	0.69
0.7431	275.4	4.844	0.673
0.7444	274.4	4.854	0.688

Time (day)	Displacement (ft)	Time (day)	Displacement (ft)
0.7458	273.4	4.865	0.684
0.7472	272.3	4.875	0.653
0.7486	271.4	4.885	0.668
0.75	270.3	4.896	0.663
0.7514	269.3	4.906	0.611
0.7528	268.4	4.917	0.648
0.7542	267.4	4.927	0.621
0.7556	266.4	4.938	0.628
0.7569	265.4	4.948	0.607
0.7583	264.5	4.958	0.621
0.7597	263.4	4.969	0.628
0.7611	262.4	4.979	0.585
0.7625	261.6	4.99	0.583
0.7639	260.5	5.	0.557
0.7653	259.6	5.01	0.563
0.7667	258.6	5.021	0.577
0.7681	257.8	5.031	0.531
0.7694	256.8	5.042	0.562
0.7708	255.8	5.052	0.53
0.7722	254.9	5.063	0.559
0.7736	254.	5.073	0.527
0.775	253.1	5.083	0.568
0.7764 0.7778 0.7792	253.1 252.1 251.3 250.4	5.094 5.104 5.115	0.547 0.521 0.529
0.7806	249.5	5.125	0.562
0.7819	248.5	5.135	0.514
0.7833	247.7	5.146	0.51
0.7847	246.9	5.156	0.485
0.7861	245.9	5.167	0.47
0.7875	245.	5.177	0.47
0.7889	244.1	5.188	0.47
0.7903	243.4	5.198	0.479
0.7917	242.5	5.208	0.486
0.7931	241.6	5.219	0.452
0.7944	240.9	5.229	0.472
0.7958	239.9	5.24	0.398
0.7972	239.2	5.25	0.46
0.7986	238.3	5.26	0.449
0.8	237.4	5.271	0.401
0.8014	236.6	5.281	0.417
0.8028	235.8	5.292	0.413
0.8042	234.9	5.302	0.413
0.8056	234.1	5.313	0.439
0.8069	233.3	5.323	0.397
0.8083	232.5	5.333	0.432
0.8097	231.6	5.344	0.408
0.8111	230.9	5.354	0.421
0.8125	230.	5.365	0.376
0.8139	229.2	5.375	0.424
0.8153	228.3	5.385	0.398
0.8167	227.6	5.396	0.386
0.8181	226.8	5.406	0.371
0.8194	226.1	5.417	0.331
0.8208	225.3	5.427	0.335
0.8222 0.8236 0.825	224.5 223.7 223. 222.2	5.438 5.448 5.458	0.335 0.352 0.328
0.8264	222.2	5.469	0.341
0.8278	221.4	5.479	0.335
0.8292	220.7	5.49	0.313
0.8306	219.9	5.5	0.328
0.8319	219.1	5.51	0.345
0.8333	218.4	5.521	0.32
0.8347	217.6	5.531	0.333
0.8361	216.9	5.542	0.305

$\begin{array}{l} \underline{\text{Time (day)}}\\ 0.8375\\ 0.8389\\ 0.8403\\ 0.8417\\ 0.8431\\ 0.8441\\ 0.8458\\ 0.8472\\ 0.8486\\ 0.85\\ 0.8514\\ 0.8528\\ 0.8542\\ 0.8556\\ 0.8569\\ 0.8569\\ 0.8569\\ 0.8569\\ 0.8569\\ 0.8569\\ 0.8569\\ 0.8667\\ 0.8681\\ 0.8694\\ 0.8708\\ 0.8722\\ 0.8667\\ 0.8681\\ 0.8694\\ 0.8778\\ 0.8778\\ 0.8778\\ 0.8778\\ 0.8792\\ 0.8806\\ 0.8792\\ 0.8806\\ 0.8819\\ 0.8833\\ 0.8847\\ 0.8861\\ 0.8875\\ 0.8861\\ 0.8875\\ 0.8889\\ 0.8847\\ 0.8861\\ 0.8875\\ 0.8861\\ 0.8875\\ 0.8847\\ 0.8861\\ 0.8875\\ 0.8847\\ 0.8861\\ 0.8875\\ 0.8847\\ 0.8861\\ 0.8875\\ 0.8893\\ 0.8903\\ 0.8917\\ 0.8931\\ 0.8931\\ 0.8944\\ 0.8958\\ 0.8972\\ 0.8986\\ 0.9\\ 0.9014 \end{array}$	$\begin{array}{r} \underline{\text{Displacement (ft)}}\\216.2\\215.3\\214.6\\213.9\\213.2\\212.4\\211.6\\211.1\\210.2\\209.6\\208.8\\208.1\\207.4\\206.7\\206.\\205.3\\204.7\\206.\\205.3\\204.7\\204.\\203.3\\202.7\\204.\\203.3\\202.7\\202.\\201.2\\200.6\\199.9\\199.3\\198.5\\197.9\\199.3\\198.5\\197.9\\199.3\\198.5\\197.9\\199.3\\198.5\\197.9\\195.3\\194.7\\194.\\195.3\\194.7\\194.\\192.7\\194.\\192.7\\192.1\\191.4\\190.7\\190.2\\189.6\\189.\\188.3\\187.8\\187.1\\186.5\\185.9\\185.3\\\end{array}$	$\frac{\text{Time (day)}}{5.552}$ 5.563 5.573 5.583 5.594 5.604 5.615 5.625 5.635 5.646 5.656 5.667 5.677 5.688 5.698 5.708 5.719 5.729 5.74 5.75 5.76 5.771 5.781 5.792 5.802 5.813 5.823 5.844 5.865 5.875 5.885 5.896 5.906 5.917 5.927 5.938 5.948 5.958 5.969 5.979 5.99 6. 6.01 6.021 6.031	$\begin{array}{r} \underline{\text{Displacement (ft)}}\\ 0.292\\ 0.345\\ 0.287\\ 0.316\\ 0.281\\ 0.301\\ 0.277\\ 0.303\\ 0.276\\ 0.315\\ 0.261\\ 0.29\\ 0.287\\ 0.293\\ 0.268\\ 0.265\\ 0.302\\ 0.288\\ 0.265\\ 0.302\\ 0.288\\ 0.277\\ 0.26\\ 0.268\\ 0.272\\ 0.23\\ 0.279\\ 0.216\\ 0.268\\ 0.272\\ 0.23\\ 0.279\\ 0.216\\ 0.263\\ 0.279\\ 0.216\\ 0.263\\ 0.257\\ 0.215\\ 0.198\\ 0.201\\ 0.249\\ 0.215\\ 0.198\\ 0.201\\ 0.249\\ 0.215\\ 0.206\\ 0.19\\ 0.215\\ 0.206\\ 0.19\\ 0.215\\ 0.206\\ 0.19\\ 0.215\\ 0.204\\ 0.202\\ 0.198\\ 0.211\\ 0.188\\ 0.239\\ 0.198\\ 0.228\\ 0.23\\ 0.204\\ \end{array}$
0.9028	184.7		

SOLUTION


Pumping Test Aquifer Model: Confined Solution Method: Dougherty-Babu

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter T S	Estimate 0.9992 5.0E-5	ft ² /day
Kz/Kr	1.	
Sw	0.	
r(w)	0.2865	ft
r(c)	0.2865	ft

K = T/b = 0.01998 ft/day (7.05E-6 cm/sec)Ss = S/b = 1.0E-6 1/ft

-CONFIDENTIAL-

Data Set: C:\Users\david.gnage\Documents\PROJECTS\1803-03_Cargill_Cayuga\2099_Corehole Oversight\Repord Date: 11/12/13 Time: 16:40:50

PROJECT INFORMATION

Company: RESPEC Client: Cargill Location: Cayuga

AQUIFER DATA

Saturated Thickness: 50. ft Anisotropy Ratio (Kz/Kr): 0.1

PUMPING WELL DATA

No. of pumping wells: 1

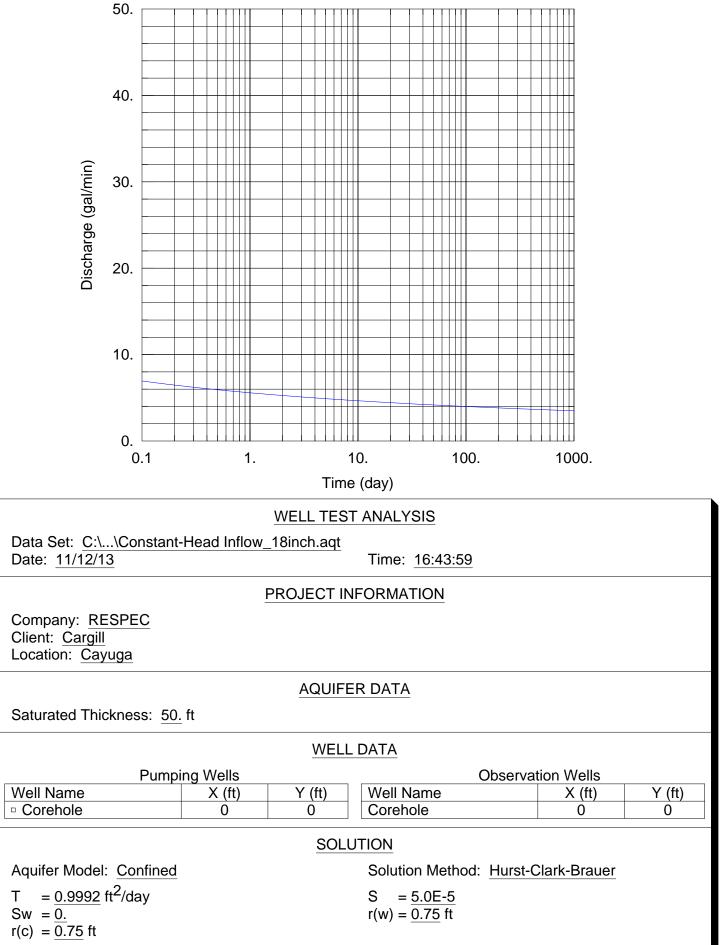
Pumping Well No. 1: Corehole

X Location: 0. ft Y Location: 0. ft

Casing Radius: 9. ft Well Radius: 9. ft

Fully Penetrating Well

No. of pumping periods: 3


1 1 51				
Time (day) 0.1 0.5	Pumping Pe Rate (gal/min) 15. 15.	riod Data <u>Time (day)</u> 1.	<u>Rate (gal/min)</u> 15.	
OBSERVATION WELL	DATA			
No. of observation wells:	: 1			
Observation Well No. 1:	Corehole			
X Location: 0. ft Y Location: 0. ft				
Radial distance from Co	rehole: 0. ft			
Fully Penetrating Well				
Constant head: 979. ft				
No. of Observations: 3				
	Observatio	on Data		
<u>Time (day)</u> 0. 0.	Displacement (ft) 0. 0.	Time (day) 0.	Displacement (ft) 0.	
SOLUTION				
Constant-Head Test Aquifer Model: Confined Solution Method: Hurst-	1 Clark-Brauer			

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter T S	Estimate 0.9992 5.0E-5	ft ² /day
Sw r(w) r(c)	0. 9. 9.	ft ft

K = T/b = 0.01998 ft/day (7.05E-6 cm/sec)Ss = S/b = 1.0E-6 1/ft

-CONFIDENTIAL-

Data Set: C:\Users\david.gnage\Documents\PROJECTS\1803-03_Cargill_Cayuga\2099_Corehole Oversight\Repo Date: 11/12/13 Time: 16:44:21

PROJECT INFORMATION

Company: RESPEC Client: Cargill Location: Cayuga

AQUIFER DATA

Saturated Thickness: 50. ft Anisotropy Ratio (Kz/Kr): 0.1

PUMPING WELL DATA

No. of pumping wells: 1

Pumping Well No. 1: Corehole

X Location: 0. ft Y Location: 0. ft

Casing Radius: 0.75 ft Well Radius: 0.75 ft

Fully Penetrating Well

No. of pumping periods: 3

<u>Time (day)</u> 0.1 0.5	Pumping F Rate (gal/min) 15. 15.	Period Data Time (day) 1.	Rate (gal/min) 15.	
OBSERVATION WELL DATA				

No. of observation wells: 1

Observation Well No. 1: Corehole

X Location: 0. ft Y Location: 0. ft

Radial distance from Corehole: 0. ft

Fully Penetrating Well

Constant head: 979. ft

No. of Observations: 3

Observation Data					
<u>Time (day)</u>	Displacement (ft)	Time (day)	Displacement (ft)		
0.	0.	0.	0.		
0.	0.				

SOLUTION

Constant-Head Test Aquifer Model: Confined Solution Method: Hurst-Clark-Brauer

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter T S	Estimate 0.9992 5.0E-5	ft ² /day
Sw r(w) r(c)	0. 0.75 0.75	ft ft

K = T/b = 0.01998 ft/day (7.05E-6 cm/sec)Ss = S/b = 1.0E-6 1/ft