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1 INTRODUCTION

Cargill, Inc. (Cargill) mines salt from the No. 6 Salt bed at its Cayuga Mine, a conventional
underground mine near Lansing, New York. Cargill would like to store water in the S3 Submain
and its adjacent panels. Once placed, the water will not be withdrawn (no circulation). The panels
consist of small pillars designed to slowly yield over time. Other portions of the mine are and will
remain active, and Cargill is interested in assessing the global stability in the flooded area, which
if compromised, could potentially cause a sudden flood of the stored water into the active
workings.

Cargill retained Agapito Associates, Inc. (Agapito) to assess the effect of the planned
flooding on the global stability of the subject panels. Previously, Cargill commissioned a study of
panel flooding by RESPEC of Rapid City, South Dakota. While Cargill did not provide the
resulting RESPEC report to Agapito, Cargill specified input parameters assumed in the previous
study so that the results of the Agapito and RESPEC work could be directly compared by Cargill.
Working with Dr. Samrat Mohanty of Cargill, it was agreed that the E5 Panel and the immediately
adjacent portion of the S3 Submains would be analyzed, as the ES Panel represents one of the
larger panels inby, with a relatively high flooded water head. The immediate roof over the panel
is a claystone that is somewhat water sensitive; therefore, it is expected that the roof will tend to
deteriorate over the entries in time after the panels are flooded. Agapito proposed and Cargill
approved a criterion for roof deterioration based on the stress state and flexural strength of the
claystone, allowing for likely effects of roof deterioration on pillar and panel stability to be
included in the analysis.

The analysis includes creep simulation of the salt layers in the overburden and the No. 6
Salt bed. A total of 50 years of creep was included. The E5 Panel was developed approximately
12 years ago, and Cargill estimates that it will take 8 additional years for the water stored in the
S3 Submains to reach the roof of the E5 Panel. At this point, flooding will continue updip for
10 years, with the head at the E5 roof increasing from 0 pounds per square inch (psi) to 20 psi in
that time (the panels are isolated hydraulically from the overlying strata and Cayuga Lake).
Therefore, the analysis has three periods of creep. Years 0 to 20 simulate dry conditions,
representing the time from initial mining to the time flooding reaches the ES roof. Years 20 to 30
simulate active flooding, with water head increasing from 0 to 20 psi in 2-psi annual increments,
and years 30 to 50 simulate steady-state flooding with a constant water head of 20 psi. For
consistency with RESPEC’s results, which are usually referenced to time after flooding, 20 years
can be subtracted from the Agapito model year to arrive at the time after flooding.

The analysis was performed using FLAC3D (Itasca 2013), a three-dimensional (3D) finite-
difference method.

2 MODEL GEOMETRY AND INPUTS

The geometry of the S3 area provided by Cargill, and the ES Panel included in the model
are shown in Figure 1. Consistent with RESPEC’s assumptions, pillars in the E5 Panel were
modeled at [llfect (ft) by Il ft, and pillars in the S3 Submains werep. ft by [} ft. Cargill intends

that the disposed water will be an almost saturated brine, so potential dissolution of the pillars is
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Figure 1. Panels Off the S3 Submain (left) and Plan View of Area Included in the Model (right)
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not thought to be significant; the modeled pillars allow for approximately 6 inches of dissolution
around the pillar perimeter. With an entry width of [Jll ft and a crosscut width of ll ft, the panel
centers are [[ll ft by [l ft, and the submains are [[llft by Il ft. The panel is basically symmetrical
about its centerline, so the centerline was used as a line of symmetry to improve computational
efficiency. Elements were one-foot cubes in the No. 6 Salt bed and overlying claystone, with
increasing coarseness distant from this zone of detail.

The model extends 1,000 ft above the No. 6 Salt mining horizon, and about 620 ft below
it. The model length (parallel to the E5 Panel) is [l ft, and the width is [l ft. The E5 Panel is
situated beneath Cayuga Lake, and a surcharge load corresponding to the weight of the lake water,
sediments, shale, and a portion of the carbonates was applied to the top of the model (—882.8 ft
above mean seal level, AMSL), corresponding to vertical stress of 1,317 psi. The pre-mining
vertical stress from overburden loading at the top of the No. 6 Salt is 2,490 psi. A view of the
model and the layers included is shown in Figure 2. Even though there is a mild gradient along the
submains entries, the modeled strata were assumed to be horizontal for simplicity and
computational efficiency.

Lithology and unit properties were provided by Cargill to match those used by RESPEC.
Small adjustments were made in consultation with Dr. Mohanty, particularly regarding tensile
strengths of the modeled strata units. A summary of the model lithology, thickness, and input
properties is given in Table 1.

The unit weights shown in Table 1 were provided by Cargill. The unit weights of non-salt
units reflect a 19% increase over the measured unit weights to replicate the vertical stress gradient
thought to exist at the mine. Horizontal stresses parallel to the panel centerline were [llltimes the
vertical stress, and horizontal stresses perpendicular to the panel centerline were [l times the
vertical stress.

2.1 Material Models

As shown in Table 1, the various non-salt lithologies associated with the S3 Area were
modeled either as surcharge loading on the top of the model, elastic materials, or plastic materials
following the Mohr-Coulomb failure criterion. Lithologies high in the overburden, or in the main
floor were assigned elastic properties, meaning they can accept unlimited load without failing. The
relatively distant positions of these layers make them less important with respect to interaction
with the salt layers and the stability of the mine workings, and assigning elastic properties to such
layers helps to speed run times. Plastic materials were used for non-salt layers interspersed with
the salt layers. Plastic materials behave elastically until they reach failure; afterwards they continue
to deform without shedding load or taking additional load.

The salt layers were modeled using the Norton power law formulation (Norton 1929)
available in FLAC3D that is commonly used to model salt creep behavior. The standard form of
the power law is:

€cr = A"
(Eqn. 1)
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Carbonates

Camillus shale

No. 1 Salt
No. 1-2 nonsalt
No. 2 Salt
No. 2-3 nonsalt
No. 3 Salt
No. 3-4 nonsalt

No. 4 Salt
No. 4-4A nonsalt

No. 4A Salt

No. 4A-5 nonsalt

No. 5 Salt

No. 5-5A nonsalt
No. 5A Salt
Claystone

No. 6 Salt

No. 6-7 nonsalt
No. 7 Salt

Vemon shale
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Table 1. Summary of Model Lithology, Unit Thickness, and Physical Properties
Top Young's Friction  Tensile Unit
Model Elevation  Thickness Modulus Poisson's Cohesion Angle Strength  Weight
Layer Material (ft AMSL) (ft) Material Model (x 10° psi) Ratio (psi) (degrees) (psi) (pcf)
n/a  Lake water 386.0 386.0
n/a  Sed ments 0.0 200.0
n/a  De onian Shale -200.0 345.5
n/a arbonates -545.5 3373
1 Ca bonates -882.8 136.9
2 Camill s Shale -1019.7 114.6
3 No. 1 Salt -1134.3 117.8
4 No. 1-2 Non-salt -1252.1 11.8
5 No. 2 Salt -1263.9 74.9
6 No. 2-3 Non-salt -1338.8 32.6
7 No. 3 Salt -1371.4 77.0
8 No. 3-4 Non-salt -1448.4 60.5
9 No. 4 Salt -1508.9 74.6
10 No. 4-4A Non-salt -1583.5 18.9
11 No. 4A Salt -1602.4 111.0
12 No. 4A-5 Non-salt -1713.4 122.5
13 No. 5 Salt -1835.9 16.7
14 No. 5-5A Non-salt -1852.6 10.2
15  No. 5A Salt -1862.8 5.0
16 ?i‘l’a yss‘:‘o fel)\lon'sa“ -1867.8 5.0
17 I}i:’r'ifoi?“ (mining -1882.8 1.5
18  No. 6-7 Non-salt -1871.3 15.1
19  No. 7 Salt -1856.2 6.0
20  Vemon Shale -1850.2 600.0

n/a = Not applicable; pcf = pounds per cubic foot
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Where €cr s the creep rate, T is the von Mises stress, and 4 and n are material properties.
Based on a recent re-evaluation of salt creep testing results by RESPEC that excluded samples
from pillar ribs that may have undergone damage, Cargill recommended application of the two-
component form of the power law:

éep = A1 0" 4+ A o™
“ (Eqn. 2)

where

2.2 Roof Deterioration Conceptual Model

The precise behavior of the claystone roof when exposed to water is unknown, but it is
hypothesized that the current mining state has caused relaxation of the roof over the entries,
meaning that portions of the roof are in tension or relatively low compression, and that these
portions of the roof are especially susceptible to deterioration and failure as the panel is flooded.

Preliminary modeling runs confirmed that the claystone roof is in compression over the
pillars, and in low compression or tension over the entries, with tensile stresses more prevalent
near the pillar ribsides. In consultation with Dr. Mohanty, initial modeling results were reviewed,
and several approaches to simulating roof deterioration were trialed.

For comparison purposes, two models were run, a “base model” with no roof deterioration
to simulate non-flooded conditions, and a “flooded model” with roof deterioration. The first
20 years of each scenario are dry, so that portion of the analysis was run with a single model. The
base and flooded models were each run for 30 additional years to cover years 20 through 50 (in
RESPEC’s terminology, 0 through 30 years after flooding).
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Pre-flooding

Claystone roof
No. 6 Salt

1 year

S5 years

15 years

30 years

Figure 3. Vertical Section of Roof Deterioration Over Time with 240-psi Tensile Stress
Criterion

Figure 4. Pattern of Roof Degradation 30 Years after Flooding (looking up at roof surface)
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3 MODEL RESULTS

For ready comparison with previous RESPEC modeling results, Cargill requested specific
modeling outputs to include:

Vertical stress in the No. 6 Salt

Vertical stress in sections along and perpendicular to the ES Panel centerline
Mohr-Coulomb safety factors in non-salt layers

Damage potential in salt beds

Closure in the No. 6 Salt

Closure rate in the No. 6 Salt

Overall convergence and convergence at specific points in the ES Panel

Hydraulic potential (the difference between depth below the Cayuga Lake surface
expressed as water head and vertical stress in the model) in a section along the ES Panel
centerline

In general, the above outputs were developed for both the base and flooded models, with
comparison times of 1 year, 5 years, 15 years, and 30 years after flooding (overall model times of
21, 25, 35, and 50 years).

The remainder of this section will present model outputs as figures and briefly comment
on each set. However, there are only very subtle differences between the base and flooded models.
The reasons for this are that as roof deterioration occurs in the flooded models, overburden loads
are still carried by the pillars in a similar manner as in the base models. The deterioration does not
lead to massive roof failure over the pillars, as the roof directly above the pillars remains intact
and in compression. The overall pillar load and distribution, for practical purposes, is unaffected
by the roof deterioration.

Somewhat counterintuitively, the flooded model shows slightly improved conditions. The
reasons for this are twofold:

1) Deletion of roof elements causes a slight decrease in load carried by pillars. In the model,
these roof elements are removed, while in reality, failed roof would fall to and rest on the
floor, slightly increasing floor loading.

2) Flooding in the model is simulated as hydrostatic pressure applied to the roof, pillars, and
floor. This pressure serves to confine the pillars, limiting their vertical shortening and
dilation, and helps to support the roof.

Figures 5 through 8 show vertical stress at mid-height in the No. 6 Salt in plan view and
along sections across and parallel to the ES Panel. The (a) portion of each figure is the base case,
and the (b) portion is the flooded case. Although the time periods referenced are “after flooding,”
note that the base case represents no flooding. The stress distribution 1 year after flooding is very
similar for the base case (Figure 5a) and the flooded case (Figure 5b). Stresses in the panel pillars
are about 3,400 psi, and in the submains are slightly higher (up to about 4,000 psi) due to their
being larger and having undergone less deformation. The salt creep tends to transfer loads from
the panel and submains pillar to the abutments (solid salt). The abutments south of the submains
have peak stresses of about 9,000 psi, while the end-panel abutment peak stress is about 8,000 psi.

Proprietary & Confidential

Agapito Associates, Inc.



U] ‘saje1dossy 031desy

(a)
lisgizg
{ N e
o o o o ITETTTTITTTTVTITTTITTrT I I T e
IZDCDD [} {*ninn:nnnnc:ccc::cc:cccouuuut::'
IEDCDD uuuuuu:::::z;uuuc:u:,r'::;nnnnnnn::
B L e -8 p
== A' =

o < 7 ) <P <
N @) @) @) @) <

Vertical Stress (psi)

Cargill 1043-01 [Figures 5_formatted.pptx] (3-8-2022)

5

Vertical Stress (psi)

10,000

5,000

o

e

Vertical Stress (psi)

12,000
10,000
8,000
6,000
4,000
2,000

czoz ‘¢l dy

NAN

0 50 100 150 200 250 300 350 400
Distance (ft)

0O 400 800 1200 1600 2000 2400 2800
Distance (ft)

Figure Sa. Vertical Stress at Mid-Seam Height 1 Year after Flooding, Base Model (a) Plan View, (b) Section A-A’,
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Figure 7a. Vertical Stress at Mid-Seam Height 15 Years after Flooding, Base Model (a) Plan View, (b) Section A-A’,
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The corner of the submain/panel has a peak abutment stress of about 11,600 psi. Close
comparison of the base and flooded cases show that in the flooded case, the pillars are carrying
slightly lower stress, due to the roof deterioration and internal pressure assumptions previously
discussed.

As time progresses to 5, 15, and 30 years after flooding (Figures 6, 7, and 8, respectively),
the slight differences between the base and flooded models are accentuated slightly with the
increasing internal pressure from the increasing stored water volumes. Peak stresses decrease
somewhat as the salt continues to creep.

Figures 9 through 12 show vertical stress in sections across and parallel to the ES Panel
(the (b) and (c) parts of each figure; the (a) portion shows the plan view stress in the No. 6 Salt for
reference. Close inspection of the size of the stress-relieved zone above the submain and ES Panel
shows a) an increase in the size of this zone with time as the salt pillars creep and b) a slightly
smaller zone in the flooded model than the base model.

Mohr-Coulomb safety factors are shown in vertical section for the non-salt layers over time
in Figure 13. The red areas indicate zones where tensile stresses approach or reach the tensile
strength (600 psi). These zones may be subject to crack formation outside the panel boundaries.
However, it should be noted that Dr. Mohanty is of the opinion that the assumed rock mass tensile
strengths are rather conservative for the non-salt overburden layers at the Cayuga Mine, and
Agapito concurs. Therefore, these red zones in the model are unlikely to have a practical effect on
panel stability. Layers higher than the 4A-5 show high safety factors. Plan view plots of non-salt
safety factors 30 years after flooding (Figures 14 through 17) show that the low safety factors are
concentrated over the panel/abutment boundaries, where bending of the layer is greatest. In
particular, Figure 14 b shows that the claystone roof above the pillars is stable in the flooded
model, while the white areas in the plot show cavities where the claystone roof has deteriorated
over the entries. Again, flooding has a small stabilizing effect on global stability.

Damage potential for salt layers was calculated using equations supplied by Cargill based
on like calculations by RESPEC. The criteria given by RESPEC for salt damage potential (DP) is:

Contours of damage potential are shown in vertical section for the salt layers over time in
Figure 18. As is shown, significant damage potential is limited to the overlying No. 5A and No. 5
salt beds where bending is induced, with slightly less damage potential in the flooded model. Note
that the elevated damage potential seen at the top of the No. 1 salt beginning in year 15 is related
to the interface between the salt and the Camillus shale (assumed to be elastic). This is a modeling
edge artifact of no practical consequence.

Further details of the salt damage potential are shown in plan view plots of the various salt
layers 30 years after flooding (Figures 19 through 22). Like the non-salt layers, damage potential
is greatest at panel/abutment boundaries, and flooding has a small stabilizing effect. Damage
potential in the No. 4A salt (Figure 22) and overlying layers is negligible.
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Figure 10a. Vertical Stress 5 Years after Flooding, Base Model (a) Plan View, (b) Section A-A’, (c¢) Section B-B’
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Figure 21b. Damage Potential 30 Years after Flooding, No. 5 Salt, Flooded Model
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Closure in the No. 6 Salt is shown over time in Figure 23. Maximum closure at the center
of the E5 Panel is in excess of 3.5 ft 30 years after flooding, and again slightly less closure is
shown in the flooded model compared to the base model (Figure 23b). It should be noted that this
degree of closure is much greater than historically observed at the Cayuga Mine. The closure in
the model is driven by the creep parameters supplied by Dr. Mohanty and Cargill, and no attempt
was made to calibrate the model to observed closure or closure rates. The value of closure and
closure rate plots presented in this study is therefore in comparing values between the base and
flooded models. As closure in the models is greater than that observed historically, the model is
conservative regarding the impacts of strata movement.

Closure rate is shown over time for the flooded model in Figure 24. Closure rates in excess
of 0.6 inches per year are seen at the panel center 1 year after flooding, decreasing to over 0.4
inches per year after 30 years. Plan view closure rate was not calculated for the base model, but is
expected to be very similar to the flooded models, with slightly higher closure rates. This is borne
out in the discussion below.

Further examination of closure and closure rate was made by plotting these parameters at
various monitoring points in the base and flooded models. Monitoring point locations are shown
in Figure 25. Convergence over the 50 years of modeled creep is shown at the monitoring points
in Figure 26. Close examination shows slightly less convergence in the flooded model. To better
illustrate this, the base and flooded model convergence for the point with greatest convergence
(P1) are shown on the same plot in Figure 27. The convergence in the flooded model is very
slightly less beginning in year 21 (1 year after flooding). Figure 28 shows the closure rate at
monitoring point P1. The rates are nearly identical.

Finally, Agapito was asked to plot hydraulic potential, defined by Cargill as the depth
below the Cayuga Lake surface expressed as pounds per square inch of water head minus the
vertical stress at a given point in the model. Hydraulic potential is shown for years 1, 5, 15, and 30
after flooding in Figure 29 parts (a) through (d). Theoretically, the potential for any water present
in the overburden to migrate to the mine workings increases as the hydraulic potential becomes
more positive. As shown, the hydraulic potential turns positive about 500 ft above the No. 6 Salt,
with a zone in excess of 750 psi about 200 ft above the mine workings. Agapito is not familiar
with the hydrogeology of the Cayuga Mine, and details of hydraulic potential and its implications
were beyond the scope of the study. From our discussions with Dr. Mohanty, we understand that
the closest aquifer is about 1,200 ft above the No. 6 Salt, so the figures indicate that the potential
for paths between the aquifer and the mine workings is low. As is the trend with other parameters
examined in this study, the hydraulic potential increases over time with salt creep, and the flooded
model has a slightly lower hydraulic potential than the base model.

4 CONCLUDING REMARKS

The FLAC3D modeling performed in the project is intended to be used as a comparison to
similar modeling previously performed for Cargill by RESPEC. The Agapito flooded model
includes an alternative approach to simulate potential claystone roof deterioration. Using this
alternative approach, the roof deteriorates in the flooded model over mine openings but is intact
and stable over pillars. Therefore, overburden loads are transmitted through the pillars to the floor
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Figure 29b. Hydraulic Potential 5 Years after Flooding (a) Base Model (b) Flooded Model (vertical section along E5 Panel
centerline)
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Figure 29c. Hydraulic Potential 15 Years after Flooding (a) Base Model (b) Flooded Model (vertical section along E5
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in a similar manner as the base model with no roof deterioration. The model inputs were specified
by Cargill to provide easy comparison with a similar RESPEC model, and as such Agapito has not
calibrated the model to mining experience.

Acknowledging these limitations, the flooded model indicates that flooding the panels off
the S3 Submain for water storage is not likely to give rise to global instability that could potentially
cause rapid ejection of water from the panels and potential flooding of other mine areas. The results
for the flooded model are very similar to the base model and show even slightly more stability due
to the removal of roof weight and the slight confinement provided to the roof, pillars, and floor by
the stored water.

5 REFERENCES
Itasca (2013), “FLAC3D User’s Manual,” Itasca Consulting Group, Inc.

Merrill, R. H., and T. A. Morgan (1958), “Method of Determining the Strength of a Mine Roof,”
USBM RI 5406, 25 pp.

Molinda, G. M., D. C. Oyler, and H. Gurgenli (2006), “Identifying Moisture Sensitive Roof Rocks
in Coal Mines,” Proceedings, 25th International Conference on Ground Control in Mining,
Morgantown, WV, pp. 57-64.

Norton, F. H. (1929). “Creep of Steel at High Temperatures,” McGraw-Hill, New York, 116 pp.

Proprietary & Confidential

Agapito Associates, Inc.



Agapito Associates, Inc. www.agapito.com
ENGINEERS & GEOLOGISTS

December 8, 2022 1043-01

Dr. Samrat Mohanty
Cargill Salt

2400 Ships Channel
Cleveland, OH 44113

Re: Comment on the Potential Geomechanical Impacts Associated with Flooding S3
Submains on the Neighboring U12 Panel

Dear Dr. Mohanty:

This letter is an addendum to Agapito Associates, Inc. (AAI) report 1043-01!, which provided
the results of a stability analysis undertaken on S3 Submains and E5 Panel at the Cayuga Mine.
The analysis assessed the effects of the planned flooding on the global stability of the S3
Submains through numerical modelling of the E5 Panel. This addendum addresses two queries
from the New York Department of Environmental Conservation (NYDEC) with regard to the
conclusions in AAI’s report. The two items are as follows:

1. Based on modelling results of S3 Submains and E5 Panel, are there any
geomechanical impacts of storing water on the neighboring panels with a history of
high ground convergence, particularly U12 Panel which is located north of S3
Submains.

2. Comment on the impacts of increased humidity (if any) from the introduction of brine
in S3 Submains on ground convergence in U12 Panel.

In regard to Item 1, AAI do not anticipate any significant geomechanical impacts on any parts of
U12 Panel associated with storing water in S3 Submains. The rational in regard this assessment
are as follows:

e The modeling results indicated a slight increase in global stability of the S3 mine
workings after flooding. This is mainly attributed to the removal of roof weight during
flooding and the slight confinement provided to the roof, pillars, and floor by the
stored water.

e The modelling results also indicated that the mining induced stresses return to virgin
stress conditions approximately 300 feet (ft) from the edge of the mine workings. This

! Agapito Associates, Inc. (2021). FLAC3D Stability Analysis of S3 Submains and E5 Panel, Cayuga Mine. Report 1043-01.
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therefore suggests that any mining areas located greater than 300 ft from an adjacent
stable mining area will not be subjected any significant stress surcharges.

The mine has indicated that the extent of the stored water level will be limited to the
midpoint between SW2 Mains and E3 Panel, an approximate distance of 1,500 ft from
the nearest point of U12 Panel. AAI understands that the mine workings in S3
Submains dip away from U12 Panel.

In regard to Item 2, AAI agree with Cargill's approach to monitor for any significant impacts that
any increased levels of humidity from storing water in S3 Submains will have on ground conditions
in U12 Panel. In arriving at this agreement, AAI have considered the following points:

e The workings in S3 Submains will be flooded in a gradual and controlled manner over

approximately 18 years starting at the back of the workings. This will allow Cargill to
progressively monitor the impacts, if any, of the stored water on the humidity levels in
adjacent areas of the mine.

Humidity monitoring in the U12 Panel indicates seasonal peaks of relatively high
humidity and as such, Cargill believes that any increased levels of humidity from the
stored water in S3 Submains will have an insignificant impact on the humidity levels
beyond the levels historically measured in the panel.

Thank you for the opportunity to assist in this matter for the Cayuga Mine. We will be happy to
discuss any modifications, clarifications, or questions you may have, at your convenience.

Y ours sincerely,

Ws)&tmw

Ry Stone, CPEng.
Senior Associate
ry.stone@agapito.com

RS:klg

Transmitted in PDF format via email to samratmohanty@cargill.com
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Kenney Geotechnical Engineering Services, PLLC q
Office: 6901 Herman Road, Syracuse, NY 13209
Mail :P.O. Box 117 Warners, NY 13164 Kenney Geotechnical

Services

Phone: (315) 638-2706 Fax: (315) 638-1544 |

Project No.: 2021-146 |Date: 10/4/2021
Project Name: CARGILL LANSING

DIRECT SHEAR TEST OF SOIL

ASTM D3080 SAT. SAMPLE

NOTES: TESTING PERFORMED ON ROCK SALT BLOCK SAMPLES PROVIDED BY CARGILL. SAMPLE WRAPPED IN PLASTIC PRIOR TO TESTING.
SMALL BLOCK CUT FROM THREE DIFFERENT BLOCKS. SAMPLE SATURATED IN BRINE SOLUTION FOR 24 HOURS BEFORE TESTING.

AREA: | 4 INCHES SQ. MOISTURE CONDITION: | MOIST | |
NORMAL STRESS: 100|psI
DISPLACMENT LOAD STRESS

(INCH) LBS PSI
0.000 0 0.00
0.003 22.8 5.70
0.062 51.6 12.90
0.080 15.4 18.85
0.099 101.6 25.40
0.109 124.7 31.18
0.124 150.2 37.55
0.148 168.7 42.18
0.166 1717.1 44.28
0.187 196.5 49.13
0.209 212.5 53.13
0.222 218.6 54.65
0.248 220.8 55.20
0.274 217.6 54.40
0.301 208.6 52.18
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Kenney Geotechnical Engineering Services, PLLC q
Office: 6901 Herman Road, Syracuse, NY 13209

Mail :P.O. Box 117 Warners, NY 13164 Kenney Geotechnical
Phone: (315) 638-2706 Fax: (315) 638-1544 serviest
Project No.: 2021-146 |Date: 10/4/2021
Project Name: CARGILL LANSING

DIRECT SHEAR TEST OF SOIL

ASTM D3080 SAT. SAMPLE

NOTES: TESTING PERFORMED ON ROCK SALT BLOCK SAMPLES PROVIDED BY CARGILL. SAMPLE WRAPPED IN PLASTIC PRIOR TO TESTING.
SMALL BLOCK CUT FROM THREE DIFFERENT BLOCKS. SAMPLE SATURATED IN BRINE SOLUTION FOR 24 HOURS BEFORE TESTING.

AREA: | 4 INCHES SQ. MOISTURE CONDITION: | MOIST | |
NORMAL STRESS: 200]PsI
DISPLACMENT LOAD STRESS
(INCH) LBS PSI

0.000 0 0.00
0.030 45.2 11.30
0.059 101.9 25.48
0.075 150.2 37.55
0.091 200.6 50.15
0.100 224.17 56.18
0.116 300.1 75.03
0.136 3371.7 84.43
0.148 358 89.50
0.177 402.3 100.58
0.197 422.3 105.58
0.208 431.1 107.78
0.219 442.4 110.60
0.274 422.3 105.58
0.301 420.5 105.13
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Kenney Geotechnical Engineering Services, PLLC q
Office: 6901 Herman Road, Syracuse, NY 13209

Mail :P.O. Box 117 Warners, NY 13164 Kenney Geotechnical
Phone: (315) 638-2706 Fax: (315) 638-1544 e
Project No.: 2021-146 |Date: 10/4/2021

Project Name:

CARGILL LANSING

DIRECT SHEAR TEST OF SOIL

SAT. SAMPLE

ASTM D3080

NOTES: TESTING PERFORMED ON ROCK SALT BLOCK SAMPLES PROVIDED BY CARGILL. SAMPLE WRAPPED IN PLASTIC PRIOR TO TESTING.
SMALL BLOCK CUT FROM THREE DIFFERENT BLOCKS. SAMPLE SATURATED IN BRINE SOLUTION FOR 24 HOURS BEFORE TESTING.

AREA: | 4 INCHES SQ. MOISTURE CONDITION: | MOIST | |
NORMAL STRESS: 300]psI
DISPLACMENT LOAD STRESS
(INCH) LBS PSI

0.000 0 0.00
0.025 61.1 15.28
0.055 149.6 37.40
0.072 226.3 56.58
0.088 305.2 76.30
0.095 375.3 93.83
0.114 445.3 111.33
0.132 506.2 126.55
0.144 531.5 134.38
0.170 580.9 145.23
0.184 625.6 156.40
0.195 658.6 164.65
0.199 660.8 165.20
0.244 622 155.50
0.267 621.5 155.38
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BRINE SAT.

Peak
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Stress Stress

psi psi
100.0 588.2
200.0 110.6
300.0 165.2
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